Effects of Quarry Dust as Partial Sand Replacement on Compressive Strength and Crack Profile of Cement Composites

2015 ◽  
Vol 819 ◽  
pp. 399-404
Author(s):  
M. Madzura ◽  
M.N. Mazlee ◽  
Shamsul Baharin Jamaludin

This research presents the findings of experimental works in terms of mechanical properties and crack profile of cement composites containing quarry dust at different percentages as a partial sand replacement. The compositions of quarry dust were varied from 10 to 20 wt. % and were mixed into five different ratios. It was found that 0.45 water cement ratio was suitable to mix all proportions and values of slump were observed have been increased with the increasing percentage of quarry dust in cement composites. The compressive strength tests were carried out and the results showed that the compressive strength decreased at each 2.5 percent interval of quarry dust at 7 and 28 days of curing. However, the strength developments of cement composites were increased corresponding to the ages of curing. The crack profiles of cement composites have been analyzed to investigate the strength developments of the cement composites. According to the results, the cracks in the specimens were in shearing pattern at 10 and 12.5 wt. % of quarry dust in cement composites. Meanwhile, as the contents of quarry dust at 15, 17.5 and 20 wt. %, the specimens failed in shearing and splitting patterns. According to the findings of compressive strength and crack profile, the contents of quarry dust as a partial sand replacement is 12.5 wt. % were more suitable to be utilized in cement composite

2018 ◽  
Vol 13 (s1) ◽  
pp. 127-134
Author(s):  
Hyginus E. Opara ◽  
Uchechi G. Eziefula ◽  
Bennett I. Eziefula

Abstract This study compared the physical and mechanical properties of river sand concrete with quarry dust concrete. The constituent materials were batched by weight. The water-cement ratio and mix ratio selected for the experimental investigation were 0.55 and 1:2:4, respectively. The specimens were cured for 7, 14, 21 and 28 days. Slump, density and compressive strength tests were carried out. The results showed that river sand concrete had greater density and compressive strength than quarry dust concrete for all curing ages. At 28 days of curing, river sand concrete exceeded the target compressive strength by 36%, whereas quarry dust concrete was less than the target compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio are suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite.


2009 ◽  
Vol 1242 ◽  
Author(s):  
Rivas-Vázquez L.P. ◽  
Suárez-Orduña R. ◽  
Valera-Zaragoza M. ◽  
Máas-Díaz A. De la L. ◽  
Ramírez-Vargas E.

ABSTRACTThe effects of waste polyethylene aggregate as admixture agent in Portland cement at different addition polyethylene/cement ratios from 0.0156 to 0.3903 were investigated. The reinforced samples were prepared according the ASTM C 150 Standard (samples of 5 × 5 × 5 cm). The reinforcing fibers were milling at a size of 1/25 in diameter, form waste and used them to evaluate the effects in mechanical properties in cement-based composites. The evaluation of polyethylene as additive was based on results of density and compression tests. The 28-day compressive strength of cement reforced with plastic waste at a replacement polyethylene/cement ratio of 0.0468 was 23.5 MPa compared to the control concrete (7.5 MPa). The density of cement replaced with polyethylene varies from 2.114 (0% polyethylene) to 1.83 g/cm3 by the influence of polyethylene.


2019 ◽  
Vol 2 (2) ◽  
pp. 126-136
Author(s):  
M.I Retno Susilorini ◽  
Budi Eko Afrianto ◽  
Ary Suryo Wibowo

Concrete building safety of fire is better than other building materials such as wood, plastic, and steel,because it is incombustible and emitting no toxic fumes during high temperature exposure. However,the deterioration of concrete because of high temperature exposure will reduce the concrete strength.Mechanical properties such as compressive strength and modulus of elasticity are absolutely corruptedduring and after the heating process. This paper aims to investigate mechanical properties of concrete(especially compressive strength and modulus of elasticity) with various water-cement ratio afterconcrete suffered by high temperature exposure of 500oC.This research conducted experimental method and analytical method. The experimental methodproduced concrete specimens with specifications: (1) specimen’s dimension is 150 mm x 300 mmconcrete cylinder; (2) compressive strength design, f’c = 22.5 MPa; (3) water-cement ratio variation =0.4, 0.5, and 0.6. All specimens are cured in water for 28 days. Some specimens were heated for 1hour with high temperature of 500oC in huge furnace, and the others that become specimen-controlwere unheated. All specimens, heated and unheated, were evaluated by compressive test.Experimental data was analyzed to get compressive strength and modulus of elasticity values. Theanalytical method aims to calculate modulus of elasticity of concrete from some codes and to verifythe experimental results. The modulus elasticity of concrete is calculated by 3 expressions: (1) SNI03-2847-1992 (which is the same as ACI 318-99 section 8.5.1), (2) ACI 318-95 section 8.5.1, and (3)CEB-FIP Model Code 1990 Section 2.1.4.2.The experimental and analytical results found that: (1) The unheated specimens with water-cementratio of 0.4 have the greatest value of compressive strength, while the unheated specimens with watercementratio of 0.5 gets the greatest value of modulus of elasticity. The greatest value of compressivestrength of heated specimens provided by specimens with water-cement ratio of 0.5, while the heatedspecimens with water-cement ratio of 0.4 gets the greatest value of modulus of elasticity, (2) Allheated specimens lose their strength at high temperature of 500oC, (3) The analytical result shows thatmodulus of elasticity calculated by expression III has greater values compares to expression I and II,but there is only little difference value among those expressions, and (4)The variation of water-cementratio of 0.5 becomes the optimum value.


2013 ◽  
Vol 795 ◽  
pp. 664-668 ◽  
Author(s):  
Roshasmawi Abdul Wahab ◽  
Mohd Noor Mazlee ◽  
Shamsul Baharin Jamaludin ◽  
Khairul Nizar Ismail

In this study, the mixing of polystyrene (PS) beads and fly ash as a sand replacement material in foamed cement composites (FCC) has been investigated. Specifically, the mechanical properties such as compressive strength and flexural strength were measured. Different proportions of fly ash were added in cement composites to replace the sand proportion at 3 wt. %, 6 wt. %, 9 wt. % and 12 wt. % respectively. The water to cement ratio was fixed at 0.65 meanwhile ratios of PS beads used was 0.25 volume percent of samples as a foaming agent. All samples at different mixed were cured at 7 and 28 days respectively. Based on the results of compressive strength, it was found that the compressive strength was increased with the increasing addition of fly ash. Meanwhile, flexural strength was decreased with the increasing addition of fly ash up to 9 wt. %. The foamed cement composites with 12 wt. % of fly ash produced the highest strength of compressive strength meanwhile 3 wt. % of fly ash produced the highest strength of flexural strength.


2013 ◽  
Vol 438-439 ◽  
pp. 197-201
Author(s):  
Xian Hua Yao ◽  
Peng Li ◽  
Jun Feng Guan

Based on the generalization and analysis of laboratory experimental results on mix ratio, the effects of various factors such as cement content, water-cement ratio, curing time, curing conditions and types of cement on the mechanical properties of unconfined compressive strength of cement soil are presented. Results show that the unconfined compressive strength of cement soil increases with the growing curing time, and it is greatly affected by the cement content, water-cement ratio, cement types and curing time, while the effect of curing conditions is weak with a cement content of more than 10%. Moreover, the stress-strain of the cement soil responds with the cement content and curing time, increasing curing time and cement content makes the cement soil to be harder and brittle, and leads to a larger Young's modulus.


1987 ◽  
Vol 114 ◽  
Author(s):  
I. Odler

ABSTRACTA series of fiber-cement composite materials was prepared by dispersing different amounts of polyacrylnitril (PAN) fibers in portland cement suspensions of variable water/solid ratios. The samples were used to study the effect of the volume of fibers and the water-cement ratio on the physico-mechanical properties of the material. The distribution of the fibers within the cementitious matrix and the fracture mechanism were studied by SEM and compared with those existing in glass fiber-cement composites.


2014 ◽  
Vol 912-914 ◽  
pp. 131-135
Author(s):  
Xiang Ping Fu ◽  
Xiao Xue Liu ◽  
Yi Ze Sun ◽  
Pei Huang ◽  
Yu Chen Li ◽  
...  

The experiment studies how the freeze-thaw cycles influence concrete compressive strength and elasticity modulus with different water-cement ratio under the air-entraining agent and zero of that value respectively. It can be found that modulus of elasticity and compressive strength of the concrete specimen reduced significantly when there is air-entraining agent; the durability of freeze-thaw resistance, however, makes great improvement; as the cement increases, both of them improves effectively. Through the comparison of concrete compressive strength and elastic modulus with different water-cement ratio and air-entraining agent, the optimal water-cement ratio and air-entraining agent were determined. The results of experiment can be used in concrete engineering design in severe cold area.


2021 ◽  
pp. 11-16
Author(s):  
Mushtaque Ahmed Pathan ◽  
Maryam Maira ◽  
Arif Ali Khaskheli ◽  
Agha Jamshed Ahmed

This study shows the comparative analysis engineering, the physical and mechanical properties of river sand concrete with quarry dust concrete. The selected materials were batched by weight and volume. The water-cement ratio opted as 0.50 1:2:4 for mix ratio was selected for the experimental investigation respectively. The specimens were cured for 7, 14, 21, and 28 days. For the purpose Slump, density, and compressive strength tests were carried out. The river sand concrete showed better results and greater density and compressive strength than quarry dust concrete for all curing ages. The 28 days of curing, river sand concrete rise the required compressive strength by 36%, whereas quarry dust concrete was less than the limit compressive strength by 12%. Both river sand concrete and quarry dust concrete for the selected water/cement ratio and mix ratio has been found suitable for non-structural applications and lightly-loaded members where high strength is not a prerequisite. Keywords: River Sand; Quarry Dust; Density; Compressive Strength; Concrete


2021 ◽  
Vol 887 ◽  
pp. 415-421
Author(s):  
V. Ezerskiy ◽  
N.V. Kuznetsova ◽  
A.D. Seleznev

The object of study is a cement composite material with powdered utilized optical discs. The objective is to establish the dependences of the main strength characteristics – com-pressive strength, bending strength, and density – on the amount of waste added into the mix-ture and the water-cement ratio.The compositions of the mixtures for the production of the cement composite material samples consisted of the following components: cement, sand, powdered waste in the form of utilized optical discs and water.Based on the results of testing the samples, mathematical models have been developed which describe the dependences of the physical and mechanical properties of the cement com-posite material samples on the fraction of waste and water-cement ratio. It was found that with an increase in the amount of powdered waste added into the mixture, it reduces the compressive strength, bending strength, and density of the samples under study, however, the optimization of the water-cement ratio makes it possible to obtain equal strength compositions with a differ-ent fraction of waste.Component compositions of cement composite material mixtures with the addition of powdered utilized optical discs in the amount of 10 to 25 % of the total filler mass, which can provide construction products with a compressive strength class B20, are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Huai-shuai Shang ◽  
Ting-hua Yi ◽  
Xing-xing Guo

Nondestructive testing technology is essential in the quality inspection of repair, alteration, and renovation of the existing engineering, especially for concrete structure in severe environment. The objective of this work is to deal with the behavior of ultrasonic velocity and mechanical properties of plain concrete and air-entrained concrete subjected to freeze-thaw cycles (F-T-C). The ultrasonic velocity and mechanical properties (tensile strength, compressive strength, cubic compressive strength, and splitting strength) of C30 air-entrained concrete and plain concrete with different water-cement ratio (water-cement ratio was 0.55, 0.45, and 0.50, resp.) after F-T cycles were measured. The influences of F-T cycles on ultrasonic velocity and mechanical properties of C30 air-entrained concrete and plain concrete were analyzed. And the relationship between mechanical properties and ultrasonic velocity was established. The experimental results can be useful for the design of new concrete structure, maintenance and life prediction of existing concrete structure such as offshore platform and concrete dock wall.


Sign in / Sign up

Export Citation Format

Share Document