An Experimental Investigation of the Size Effects in Forming Processes of High-Purity Thin Metallic Sheets

2016 ◽  
Vol 879 ◽  
pp. 459-464 ◽  
Author(s):  
Pierre Antoine Dubos ◽  
Gwendoline Fleurier ◽  
Eric Hug

Miniaturization of small metallic systems can lead to a softening of the mechanical behavior due to the reduction of scale. Size effects have been considerably studied recently for materials with various crystallographic structures. Under tensile conditions, thin specimen exhibit softer mechanical properties when the number of grains across thickness is lower than a critical number and this modification appears above a critical strain level. In this work, stamping tests were performed on five hundred micrometers in thickness sheets of hexagonal closed-packed cobalt. The results are compared with those obtained for face centered cubic copper and nickel. The influence of thickness over grain size ratio was studied for several proportional loadings linked to forming processes. Complex loadings were applied with 20 mm hemispherical punch and strain paths were checked with a 3D video extensometer. Hill criterion was systematically used to take into account the anisotropy of the samples. Our results revealed that the critical strain level for which the size effects appears is strongly sensitive to the stress triaxiality which, in turn, is closely dependent to the loading path.

1983 ◽  
Vol 105 (4) ◽  
pp. 242-249 ◽  
Author(s):  
M. G. Stout ◽  
S. S. Hecker ◽  
R. Bourcier

2024 aluminum tubes, heat treated to a T6 and T8 temper, were tested in combinations of tension-internal pressure and tension-torsion loading. Yield loci and flow behavior were determined for both modes of loading and compared to theoretical predictions. Both tempers of 2024 aluminum exhibited crystallographic textures and anisotropic yield and flow. Hill’s quadratic yield criterion and the associated flow rule under-estimate balanced biaxial yield and flow, which is consistent with hydraulic bulge data on other face-centered cubic metals. Hill’s nonquadratic criterion, which adds one additional parameter, and Bassani’s criterion, which adds two parameters, predict the anisotropic yield behavior much more accurately. Predictions of the complete flow behavior, including strain paths, with these anisotropic criteria could be improved markedly by including provisions for planar anisotropy.


2013 ◽  
Vol 44 (12) ◽  
pp. 5478-5487 ◽  
Author(s):  
Pierre-Antoine Dubos ◽  
Eric Hug ◽  
Simon Thibault ◽  
Mohamed Ben Bettaieb ◽  
Clément Keller

2016 ◽  
Vol 879 ◽  
pp. 560-565
Author(s):  
Gwendoline Fleurier ◽  
Mayerling Martinez ◽  
Pierre Antoine Dubos ◽  
Eric Hug

The occurrence of size effects in cobalt was examined by the analysis of mechanical properties of samples with thickness t, in a large range of grain size d giving a number of grains across the thickness t/d. On Hall-Petch plots, from the very beginning of plastic strain, two linear behaviors are notable: the polycrystalline one for higher t/d and the multicrystalline one for lower t/d in which the flow stress is strongly reduced. (t/d)c is the threshold value between the two behaviors taking a value of around 14. This high value is directly linked to the low stacking fault energy of cobalt. The microstructure of the polycrystalline samples exhibits a strong basal texture and a small proportion of a secondary face-centered cubic phase in a hexagonal close-packed main phase was evidenced. TEM analysis enables to characterize the dislocations and the stacking faults present in the two phases. To complete the analysis, two plasticity stages can be distinguished: stage A corresponding to dislocations gliding and stage B driven by twinning. Size effects in cobalt are found to occur during gliding process and could be related to surface effects as previously shown in face-centered cubic metals.


Author(s):  
Robert C. Rau ◽  
Robert L. Ladd

Recent studies have shown the presence of voids in several face-centered cubic metals after neutron irradiation at elevated temperatures. These voids were found when the irradiation temperature was above 0.3 Tm where Tm is the absolute melting point, and were ascribed to the agglomeration of lattice vacancies resulting from fast neutron generated displacement cascades. The present paper reports the existence of similar voids in the body-centered cubic metals tungsten and molybdenum.


Author(s):  
F. Monchoux ◽  
A. Rocher ◽  
J.L. Martin

Interphase sliding is an important phenomenon of high temperature plasticity. In order to study the microstructural changes associated with it, as well as its influence on the strain rate dependence on stress and temperature, plane boundaries were obtained by welding together two polycrystals of Cu-Zn alloys having the face centered cubic and body centered cubic structures respectively following the procedure described in (1). These specimens were then deformed in shear along the interface on a creep machine (2) at the same temperature as that of the diffusion treatment so as to avoid any precipitation. The present paper reports observations by conventional and high voltage electron microscopy of the microstructure of both phases, in the vicinity of the phase boundary, after different creep tests corresponding to various deformation conditions.Foils were cut by spark machining out of the bulk samples, 0.2 mm thick. They were then electropolished down to 0.1 mm, after which a hole with thin edges was made in an area including the boundary


Sign in / Sign up

Export Citation Format

Share Document