Effects of Die Steel on Die Soldering of Aluminum Alloy Die Casting

2016 ◽  
Vol 879 ◽  
pp. 943-947 ◽  
Author(s):  
Yu Mi Kim ◽  
Se Weon Choi ◽  
Young Chan Kim ◽  
Sung Kil Hong ◽  
Da Som Kang ◽  
...  

This study carried out a die soldering test using both H13 and 1045 steel to investigate the different performances of these two substrate materials with regard to die soldering. Aluminum alloys with various amounts of silicon (0, 4.5, and 9 wt.%) were used to investigate the action of silicon in the soldering reaction, with the 0 wt.% material being commercial pure aluminum. Aluminum alloy samples of varying Si content were melted and held at 680oC and both H13 and 1045 steel were dipped for two hours in the melt. After the dipping test, the specimens were air cooled and analyzed using SEM and EPMA. The reaction layer of the H13 steel and the aluminum alloys were composed of Al3Fe (ɵ), Al5Fe2(η) and Al8Fe2Si (τ5) phase. The reaction layer between the 1045 steel and the aluminum melt was composed AlFe (ζ), Al5Fe2 (η), Al3Fe (ɵ), and Al8Fe2Si (τ5). The reaction layer thickness with the H13 substrate increased with the Si content of the aluminum; it deceased with increased Si content with the 1045 steel substrate.

2015 ◽  
Vol 817 ◽  
pp. 3-7
Author(s):  
Xing Han ◽  
Bo Shao ◽  
Hai Tao Zhang ◽  
Ke Qin ◽  
Jian Zhong Cui

With the cladding casting equipment, which was self-designed and self-made, 4045/3003 composite ingot, which is in size of Φ140mm/Φ110mm, has been manufactured by direct cooling continuous casting by adjusting and optimizing the technological parameters. The process was investigated involving macro-morphology and microstructure near the interface between the two different aluminum alloys at different positions, and distributions of both components and hardness of the cladding ingot. In addition, the tensile strengths were tested. The results showed that metallurgical bonding of two different aluminum alloys could be obtained by direct-chill semi-continuous casting process. The diffusion layer, which is about 15μm on average, has formed on the two sides of composite interface during casting process. From the side of 4045 aluminum alloy to the side of 3003 aluminum alloy, the Si content has a trend to decrease, as well as the hardness, while the Mn content has a trend to increase gradually. Tensile strength of the coated ingot reaches 117.3MPa, which is higher than the core-material matrix (3003 aluminum alloy), indicating the bonding of the two alloys belongs to metallurgical bonding.


Author(s):  
Toshio Haga ◽  
Sinjiro Imamura ◽  
Hisaki Watari ◽  
Shinichi Nishida

Abstract The fluidity of pure aluminum and Al-Si alloys was investigated for casting thin products using a spiral die in die casting. An aluminum alloy with good fluidity can be die-cast into thin products. For a Si content of less than 6 mass%, the fluidity increased with decreasing Si content. For a Si content of greater than 6 mass%, the fluidity increased with increasing Si content. The fluidity was affected by latent heat, flowability in the semisolid state, and heat transfer between the die and metal. For pure aluminum, the latent heat is small and there is no semisolid state. However, pure aluminum has excellent fluidity because the heat transfer between the die and metal is small. For Al-25%Si, the latent heat is very large and flowability increases in the semisolid state. Therefore, the fluidity of Al-25%Si is high. Fluidity typically increases with increasing die temperature. The increase in fluidity due to an increase in die temperature for the pure aluminum is small compared with that for hypoeutectic Al-Si alloys. This means that the heat transfer between the pure aluminum and the die is smaller than that for hypoeutectic Al-Si alloys. Therefore, the influence of die temperature on the fluidity of the pure aluminum is small. It is estimated that the chill layer of the pure aluminum rapidly peels from the die, decreasing the heat transfer between the pure aluminum and the die.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 605 ◽  
Author(s):  
Chang-Hsien Hsu

As industrial manufacturing technologies continuously improve, many conventional industrial materials are struggling to meet the needs of today’s industries. Aluminum alloys are currently the most extensively used non-ferrous metal in the industry, whose properties include corrosion resistance, high strength, and high ductility. As a result, they are widely used in many products, such as doors and windows, vehicles, and electronics. Pure aluminum though, is a very soft, silver-white metal, so to increase its strength, aluminum alloy manufacturers add in various chemical elements (such as magnesium, silicon, and zinc) according to international standards, and then adjust the proportions based on customer needs. If the chemical element composition does not meet specification requirements, it will affect the quality of the aluminum alloy product or even delay delivery and subsequently impact the operational performance of the manufacturer. To ensure and increase aluminum alloy quality, this study used a combined Six Sigma quality index (SSQI), Qpc, to develop a multi-characteristic quality analysis model (MCQAM) with five steps for the aluminum alloy industry. A practical example with a manufacturer specializing in producing 6063 aluminum alloys in Taiwan is given to demonstrate the effectiveness and feasibility of this proposed approach. The result shows that the proposed method not only effectively improves the quality of 6063 aluminum alloy, but also enhances its performance and capability (that is, corrosion resistance increases by 17%, strength increases by 8%, and stiffness increases by 3%). Finally, future works are also discussed in this context.


MRS Bulletin ◽  
1990 ◽  
Vol 15 (7) ◽  
pp. 23-31 ◽  
Author(s):  
Hajime Ishimaru

Aluminum and aluminum alloys have long been among the preferred materials for ultrahigh vacuum (UHV) systems operating in the 10−10–10−11 torr (10−8–10−11 Pa) range. Pure aluminum and aluminum alloys have an extremely low outgassing rate, are completely nonmagnetic, lack crystal structure transitions at low temperatures, are not sources of heavy metals contamination in semiconductor processing applications, have low residual radioactivity in radiation environments, and are lightweight. Because of aluminum's high thermal conductivity and low thermal emissivity, aluminum components can tolerate high heat fluxes in spite of the relatively low melting point of aluminum.Recently developed aluminum alloys and new surface finishing techniques allow the attainment of extremely high vacuums (XHV) in the 10−12–10−13 torr (10−10–10−11 Pa) range. XHV technology requires the use of special aluminum alloy flange/gasket/bolt, nut and washer combinations, aluminum alloy-ceramic seals, windows, bellows, right-angle and gate valves, turbomolecular pumps, sputter ion pumps and titanium sublimination pumps, Bayard-Alpert ion gauges, quadrupole mass filters, and related aluminum alloy vacuum components. New surface treatment methods and new techniques in welding and extremely sensitive helium leak testing are required. In short, a whole new technology has been developed to take advantage of the opportunities presented by these new vacuum materials. This article describes some of these newly developed fabrication technologies and vacuum materials.The TRISTAN electron-positron collider constructed at the National Laboratory for High Energy Physics in Japan is the first all-aluminum alloy accelerator, and the first to use UHV technology.


2011 ◽  
Vol 702-703 ◽  
pp. 356-359
Author(s):  
Ni Tian ◽  
Gang Zhao ◽  
Bo Nie ◽  
Jian Jun Wang ◽  
Liang Zuo ◽  
...  

The texture, microstructure, plastic strain ratio r value, elongation, strain hardening index n, the value of cupping test IE, and the correlation between r value and the other formability indices of two automotive aluminum alloys sheet 6016 and 6181, and commercial pure aluminum sheet were investigated. The results showed that the recrystallization textures of three aluminum alloys sheet are similar to each other, which mainly contain cube component. However, the r and n value, elongation, and IE of three aluminum alloys sheet are different from each other evidently, and there is no correlation between texture and r value, and the other formability indices except the n value. The large quantity of second-phase particles in the aluminum alloy matrix has very important effect on both the r value and the formability of aluminum alloy sheet.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


2011 ◽  
Vol 295-297 ◽  
pp. 751-759 ◽  
Author(s):  
Hua Shen ◽  
Wei Dong Yang ◽  
He Liang ◽  
Guang Chun Yao

The presence of Fe and harmful effects on mechanical properties of pure aluminum and aluminum alloys are introduced. Several purification methods are reviewed, but all of them are of definite limitations. It is effective that precipitation method, filtration method and centrifugal division method are integrated.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Dmitry V. Dzhurinskiy ◽  
Stanislav S. Dautov ◽  
Petr G. Shornikov ◽  
Iskander Sh. Akhatov

In the present investigation, the plasma electrolytic oxidation (PEO) process was employed to form aluminum oxide coating layers to enhance corrosion resistance properties of high-strength aluminum alloys. The formed protective coating layers were examined by means of scanning electron microscopy (SEM) and characterized by several electrochemical techniques, including open circuit potential (OCP), linear potentiodynamic polarization (LP) and electrochemical impedance spectroscopy (EIS). The results were reported in comparison with the bare 6061-O aluminum alloy to determine the corrosion performance of the coated 6061-O alloy. The PEO-treated aluminum alloy showed substantially higher corrosion resistance in comparison with the untreated substrate material. A relationship was found between the coating formation stage, process parameters and the thickness of the oxide-formed layers, which has a measurable influence on enhancing corrosion resistance properties. This study demonstrates promising results of utilizing PEO process to enhance corrosion resistance properties of high-strength aluminum alloys and could be recommended as a method used in industrial applications.


Sign in / Sign up

Export Citation Format

Share Document