Tool Wear Behavior in μ-turning of Nimonic 90 Under Vegetable Oil-Based Cutting Fluid

Author(s):  
Jay Airao ◽  
Hreetabh Kishore ◽  
Chandrakant Kumar Nirala

Abstract The characteristics such as high hardness and shear modulus, low thermal conductivity, strain hardening of Nickel-based superalloys lead to high machining forces and temperature, poor surface quality and integrity, rapid tool wear, etc. The present article investigates the tool wear mechanism of the tungsten carbide (WC) tool in µ-turning of Nimonic 90 under dry, wet, and vegetable oil-based cutting fluid (VCF). Canola oil is used as vegetable oil. Three different combinations of cutting speed, feed rate, and depth of cut are considered for analysis. The tool wear is characterized using optical and scanning electron microscopy. Machining with VCF shows an approximate reduction of flank wear width in the range of 12%-52% compared to dry and wet conditions. The main wear mechanisms observed on the tool flank and rake face are abrasion, built-up edge adhesion, and edge chipping. The VCF considerably reduces the adhesion and abrasion and, hence, increases tool life. The chips produced in dry conditions are found fractured and uneven, whereas, it had an uneven lamella structure in wet conditions. The VCF found reducing the plastic deformation in each cutting condition, as a result, producing fine lamella structured chips.

2017 ◽  
Vol 882 ◽  
pp. 36-40
Author(s):  
Salah Gariani ◽  
Islam Shyha ◽  
Connor Jackson ◽  
Fawad Inam

This paper details experimental results when turning Ti-6Al-4V using water-miscible vegetable oil-based cutting fluid. The effects of coolant concentration and working conditions on tool flank wear and tool life were evaluated. L27 fractional factorial Taguchi array was employed. Tool wear (VBB) ranged between 28.8 and 110 µm. The study concluded that a combination of VOs based cutting fluid concentration (10%), low cutting speed (58 m/min), feed rate (0.1mm/rev) and depth of cut (0.75mm) is necessary to minimise VBB. Additionally, it is noted that tool wear was significantly affected by cutting speeds. ANOVA results showed that the cutting fluid concentration is statistically insignificant on tool flank wear. A notable increase in tool life (TL) was recorded when a lower cutting speed was used.


2012 ◽  
Vol 576 ◽  
pp. 76-79
Author(s):  
M. Mohan Reddy ◽  
Alexander Gorin ◽  
Khaled A. Abou-El-Hossein ◽  
D. Sujan ◽  
Mohammad Yeakub Ali ◽  
...  

Advanced ceramic materials are difficult to machine by conventional methods due to the brittle nature and high hardness. The appropriate selection of cutting tool and cutting conditions may help to improve machinability by endmilling. Performance of TiAlN and TiN coated carbide tool insert in end milling of machinable glass ceramic has been investigated. Several dry cutting tests were performed to select the optimum cutting parameters for the endmilling in order to obtain better tool life. In this work, a study was carried out on the influence of cutting speed, feed rate and axial depth of cut on tool wear.The technique of design of experiments (DOE) was used for the planning and analysis of the experiments. Tool wear prediction model was developed using Response surface methodology.The results indicate that tool wear increased with increasing the cutting speed and axial depth of cut. Effect of feed rate is not much significant on selected range of cutting condition


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 958
Author(s):  
Francisco Javier Trujillo Vilches ◽  
Sergio Martín Béjar ◽  
Carolina Bermudo Gamboa ◽  
Manuel Herrera Fernández ◽  
Lorenzo Sevilla Hurtado

Geometrical tolerances play a very important role in the functionality and assembly of parts made of light alloys for aeronautical applications. These parts are frequently machined in dry conditions. Under these conditions, the tool wear becomes one of the most important variables that influence geometrical tolerances. In this work, the influence of tool wear on roundness, straightness and cylindricity of dry-turned UNS A97075 alloy has been analyzed. The tool wear and form deviations evolution as a function of the cutting parameters and the cutting time has been assessed. In addition, the predominant tool wear mechanisms have been checked. The experimental results revealed that the indirect adhesion wear (BUL and BUE) was the main tool-wear mechanism, with the feed being the most influential cutting parameter. The combination of high feed and low cutting speed values resulted in the highest tool wear. The analyzed form deviations showed a general trend to increase with both cutting parameters. The tool wear and the form deviations tend to increase with the cutting time only within the intermediate range of feed tested. As the main novelty, a relationship between the cutting parameters, the cutting time (and, indirectly, the tool wear) and the analyzed form deviations has been found.


Author(s):  
Rosemar Batista da Silva ◽  
Álisson Rocha Machado ◽  
Déborah de Oliveira Almeida ◽  
Emmanuel O. Ezugwu

The study of cutting fluid performance in turning is of great importance because its optimization characteristics has associated benefits such as improved tool life and overall quality of machined components as well as reduction in power consumption during machining. However, there are recent concerns with the use of cutting fluids from the environmental and health standpoints. Since environmental legislation has become more rigorous, the option for “green machining” attracts the interest of several manufacturing companies. It is important to consider the cost of machining which is associated with tool wear, depending on the cutting environment. The use of vegetable oil may be an interesting alternative to minimize the health and environmental problems associated with cutting fluids without compromising machining performance. This paper presents a comparative study of mineral and vegetable cutting fluids in terms of tool wear after turning SAE 1050 steel grade with cemented carbide cutting tools. Constant depth of cut of 2mm and variable cutting speed (200 and 350 m/min) and feed rate (0.20 and 0.32 mm/rev) were employed. Test results suggest that is possible to achieve improvement in machinability of the material and increase tool life by using vegetable cutting fluid during machining. Tool life increased by about 85% when machining with vegetable-based fluids compared to mineral-based fluids. Analysis of the worn tools, however, revealed a more uniform wear on the worn flank face when machining with mineral-based fluids.


2020 ◽  
Vol 44 (3) ◽  
pp. 395-404
Author(s):  
Morvarid Memarianpour ◽  
Seyed Ali Niknam ◽  
Sylvain Turenne ◽  
Marek Balazinski

Three distinctive regions of tool wear, known as initial wear, steady-state wear, and accelerated wear, are well understood. However, the effects of cutting parameters on the initial tool wear mechanism, morphology, and size have received less attention as compared to the other two regions. Knowing that adequate control of initial tool wear may lead to extended tool life, in particular in hard-to-cut metals such as superalloys, this topic has become a source of attention. Amongst superalloys, Inconel 718 is considered as one of the most difficult to cut materials, which has a wide range of industrial applications. This study intends to evaluate the effects of cutting parameters on initial tool wear, as well as tool wear progression, when turning Inconel 718. Therefore, microstructural evaluation of the initial tool wear mode under various cutting conditions, as well as tool wear measurements, were conducted. It was observed that certain elements of the workpieces were migrated to the insert flank face. This is evidence of adhesion at the initial moments of the cutting process. In contrast to many other easy-to-cut materials, the steady-state wear period when turning Inconel 718 is significantly short under a higher level of cutting speed and feed rate.


2012 ◽  
Vol 565 ◽  
pp. 454-459 ◽  
Author(s):  
Yun Chen ◽  
Huai Zhong Li ◽  
Jun Wang

Titanium alloys are difficult-to-cut materials. This paper presents an experimental study of the effects of different cutting conditions and tool wear on cutting forces in dry milling Ti6Al4V with coated carbide inserts. The experimental results show that the peak forces increase with the increase in the feed rate and depth of cut. With the cutting speed increment in the range from 50 m/min to 150 m/min the peak forces decrease, while at further higher cutting speeds investigated peak forces increase. The decrease of the peak forces is due to thermal softening of the workpiece material and the increase is because of the strain hardening rate of Ti6Al4V. The tool wear experiment reveals that the major tool wear mechanism is the flank wear. The variations of the peak forces are caused by both the tool wear propagation and the thermal effects.


Author(s):  
Shirish Kadam ◽  
Rohit Khake ◽  
Sadaiah Mudigonda

This paper addresses experimental investigations of turning Super Duplex Stainless Steel (DSS) with uncoated and Physical Vapor Deposition PVD coated carbide inserts under dry cutting condition. The parametric influence of cutting speed, feed and depth of cut on the surface finish and machinability aspects such as cutting force and tool wear are studied and conclusions are drawn. The turning parameters considered are cutting speed of 60–360 m/min, feed of 0.05–0.35 mm/rev and depth of cut of 0.5–2 mm. Tool wear was analysed by using an optical microscope and scanning electron microscope. The study includes identification of tool wear mechanism occurring on the flank face. The characterization of the coating was made by Calo test for measurement of coating thickness and nanoindentation for hardness. Comparison of performance of PVD coatings TiAlSiN (3.3μm), AlTiN (3 μm) and AlTiN (7 μm) have been made in terms of tool life. The coatings were produced on P-grade tungsten carbide inserts by using High Power Impulse Magnetron Sputtering (HiPIMS) technology. The findings of the study also provide the economic solution in case of dry turning of super DSS.


2014 ◽  
Vol 66 (3) ◽  
Author(s):  
M. A. Hadi ◽  
J. A. Ghani ◽  
C. H. Che Haron ◽  
M. S. Kasim

A comprehensive study and FEM simulation of ball nose end milling on tool wear behavior and chip formation had been performed on Inconel 718 (nickle-based superalloy) under minimum quantity lubricant (MQL) condition. In this paper, the investigation was focusing on the comparison of up-milling and down-milling operations using a multi-layer TiAlN/AlCrN-coated carbide inserts. A various cutting parameters; depth of cut, feed rate and cutting speed were considered during the evaluation. The experimental results showed that down-milling operation has better results in terms of tool wear compared to up-milling operation. Chipping on cutting tool edge responsible to notch wear with prolong machining. It was observed that the chips formed in up-milling operation were segmented and continuous, meanwhile down-milling operation produced discontinuous type of chips.


2012 ◽  
Vol 622-623 ◽  
pp. 375-379 ◽  
Author(s):  
Sina Alizadeh Ashrafi ◽  
Ali Davoudinejad ◽  
Abdolkarim Niazi

Aluminum alloys offer number of various interesting mechanical and thermal properties which classified them among most commonly used lightweight metallic materials. Generally machining of aluminum alloys inherently generates high chip sticking on tool face and changes the tool edge geometry, which not only reduces tool life but also impairs the product surface quality. This study investigated tool wear mechanism, surface integrity, and tool life in different cutting conditions to achieve finest surface roughness with considering longest tool life. Turning experiments performed under dry orthogonal cutting of Al6061 using carbide CVD tri-phase coated inserts. Constant depth of cut with different cutting speeds and feed rates utilized in experiments. Insert’s rake and flank faces investigated to figure out wear mechanisms. In addition scanning electron microscope (SEM) employed to evaluate various wear types. Surface integrity and effect of built up edge in surface roughness deviations studied in each cutting condition. Additionally, results of experiments demonstrated that built up edge covered tool cutting edge and increased tool life by decreasing pace of the abrasive wear propagation on the flank face with sacrificing surface roughness. All in all the main reason for flank wear was abrasive and adhesion of aluminum on tool faces.


2017 ◽  
Vol 62 (3) ◽  
pp. 1827-1832 ◽  
Author(s):  
C. Moganapriya ◽  
R. Rajasekar ◽  
K. Ponappa ◽  
R. Venkatesh ◽  
R. Karthick

AbstractThis paper presents the influence of cutting parameters (Depth of cut, feed rate, spindle speed and cutting fluid flow rate) on the surface roughness and flank wear of physical vapor deposition (PVD) Cathodic arc evaporation coated TiAlN tungsten carbide cutting tool insert during CNC turning of AISI 1015 mild steel. Analysis of Variance has been applied to determine the critical influence of cutting parameters. Taguchi orthogonal test design has been employed to optimize the process parameters affecting surface roughness and tool wear. Depth of cut was found to be the most dominant factor contributing to high surface roughness (67.5%) of the inserts. However, cutting speed, feed rate and flow rate of cutting fluid showed minimal contribution to surface roughness. On the other hand, cutting speed (45.6%) and flow rate of cutting fluid (23%) were the dominant factors influencing tool wear. The optimum cutting conditions for desired surface roughness constitutes the following parameters such as medium cutting speed, low feed rate, low depth of cut and high cutting fluid flow rate. Minimal tool wear was achieved for the following process parameters such as low cutting speed, low feed rate, medium depth of cut and high cutting fluid flow rate.


Sign in / Sign up

Export Citation Format

Share Document