Microstructure and Texture Evolution in Cladded Al 3003 Aluminum Sheets

2017 ◽  
Vol 885 ◽  
pp. 159-164
Author(s):  
Adrienn Hlavacs ◽  
Márton Benke ◽  
Péter Barkóczy ◽  
Valéria Mertinger

In the present research, the texture variation during cold rolling of cladded 3003 type aluminium sheets was examined by means of X-ray diffraction. The aluminum sheets were formed in a series of 14 rolling steps, after which texture examinations were performed on both cladded and base material sides of the sheets. After certain rolling steps, the texture was also examined by removing layers from the sheets by electropolishing to reveal the texture distribution along depth. The texture was characterised through the calculation of volume fractions of the main rolled texture components. Local drawbacks were found in the texture versus thickness reduction function. The texture was found to be higher in the middle of the sheets than at the surface.

2009 ◽  
Vol 1170 ◽  
Author(s):  
Lei Guan ◽  
Guoyi Tang

AbstractThe effect of the electropulsing on recrystallized microstructure and on texture evolution of a cold rolling (CR) AZ31 strip was studied with the help of light microscopy and X-ray diffraction technique. It was exciting that the completed recrystallization state of sample subjected to the electropulsing treatment (EPT) could be obtained rapidly in ˜7s with the basal texture weakened. The favoring mechanism of static recrystallization (SRX) of MPT could be attributed to the coupled action of the thermal and athermal effects, thereinto, the latter one activated dislocation climb effectively.


2011 ◽  
Vol 702-703 ◽  
pp. 647-650
Author(s):  
Ahmed A. Saleh ◽  
Elena V. Pereloma ◽  
Azdiar A. Gazder

A TWinning Induced Plasticity (TWIP) steel was cold rolled to 42% thickness reduction followed by isochronal annealing for 300 s between 600-850 °C. Bulk texture evolution during recrystallisation was investigated by X-Ray Diffraction. While the development of the α-fibre after cold rolling is typical of low stacking fault energy materials, anomalously higher intensities were noted for the Goss ({110}) compared to Brass ({110}) orientations. Upon recrystallisation, the main rolling texture components were retained and ascribed to nucleation at orientations close to those of the deformed matrix followed by annealing twinning which leads to crystallographically identical variants. Unlike previous texture investigations on austenitic steels, the relatively homogeneous deformation microstructure and uniform distribution of subsequent nucleation sites led to the retention of the F ({111}) orientation. Moreover, the firsthand observation of the Rotated Copper ({112}) orientation in TWIP steel is attributed to the second order twinning of the A ({110}) orientation.


2015 ◽  
Vol 60 (3) ◽  
pp. 1789-1794 ◽  
Author(s):  
J. Kowalska ◽  
W. Ratuszek ◽  
M. Witkowska ◽  
A. Zielińska-Lipiec ◽  
M. Kowalski

Abstract Fe–23wt.%Mn–3wt.%Si–3wt.%Al alloy was cast, homogenized at 1150ºC, hot-rolled at temperatures between 1200ºC and 900ºC and next cold-rolled from 5% up to 40% reductions in thickness. Microstructure and texture of this alloy, which has a low stacking fault energy, were defined after cold-rolling. Investigation of transmission electron microscopy and X-ray diffraction showed that mechanical twinning and martensitic transformations (γfcc→εhcp and γfcc→εhcp→α′bcc) took place during cold-rolling. The crystallographic Shoji-Nishiyama (S-N) {00.2}ε║{111}γ, <11.0>ε ║ <110>γ and Kurdjumov-Sachs (K-S) {111}γ║{101}α’, <101>γ║<111>α’ relations between martensite (ε, α’) and austenite (γ), were found in the coldrolled material.


2020 ◽  
Author(s):  
Chi-Toan Nguyen ◽  
Alistair Garner ◽  
Javier Romero ◽  
Antoine Ambard ◽  
Michael Preuss ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 5550
Author(s):  
Yuqiang Chen ◽  
Chuang Xiong ◽  
Wenhui Liu ◽  
Suping Pan ◽  
Yufeng Song ◽  
...  

The influences of cold rolling and subsequent heat treatment on the microstructure evolution of 2524 alloy were investigated using an orientation distribution function (ODF) and electron back-scattered diffraction (EBSD). A preparation method of 2524-T3 aluminum alloy with a strong Brass texture was developed, and its effect on the fatigue properties of the alloy was investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that with the increase in cold rolling deformation from 0% to 80%, the volume fractions of Brass, copper, and S textures in the 2524-T3 alloy also increase, especially in the case of Brass and S textures. However, the volume fractions of cube and Goss textures are reduced significantly, especially for cube textures, which are decreased by 57.4%. Reducing coarse second-phase particles (CSPs) is conducive to the formation of a strong deformation texture during cold rolling. A 10% deformation at each rolling pass, followed by a step annealing, helps the preservation of a Brass texture even after solution treatment at 500 °C for 0.5 h, while a large cold deformation followed by high-temperature annealing helps the formation of a strong cube texture. The Brass texture can enhance the strength while decreasing the fatigue crack growth resistance of this alloy.


1970 ◽  
Vol 14 ◽  
pp. 214-230 ◽  
Author(s):  
M. Matsuo ◽  
S. Hayami ◽  
S. Nagashima

AbstractThe possibility that primary recrystallization textures are influenced by local inhomogeneities of deformation induced in the regions of grain boundaries has been confirmed by comparing the cold rolling and the annealing textures of polycrystalline pure irons which were different in the grain size prior to cold rolling. Analyses were made for the effects of deformation on crystals, namely storage of lattice strain and orientation spread, with application of X-ray diffraction techniques, in order to elucidate the role of in homogeneities of deformation on recrystallization texture formation. Apparent correspondence was found between the orientation dependence of stored strain energy and the textural change on recrystallization. This is a scribed to oriented nucleation in high energy blocks, in the case of originally large-grain material in which the effects of inhomogeneities of deformation are small. But discrepancies arise on this basis in originally small - grain material in which the effects of inhomogeneities of deformation are thought to be considerable. The discrepancy is inferred to arise as an effect of local inhomogeneities of deformation, from the change in the trend of rotational orientation spreads from, a stable orientation and the extent of development of potential nuclei of recrystallization at high energy blocks in the orientation spreads. The change is considered to give rise to the variation in amount of microstrain distribution, which is expressed in recovery characteristics of lattice strains and in the dependence of microstrains on the column length as analyzed by following the procedure of Warren-Averbach.


2011 ◽  
Vol 702-703 ◽  
pp. 457-460 ◽  
Author(s):  
Yoshimasa Takayama ◽  
Mei Qin Shi ◽  
Yoshihiro Ougiya ◽  
Kenta Nonaka ◽  
Hideo Watanabe

Titanium and aluminum sheets were directionally strained by friction roll surface processing (FRSP). Severe shear strain was imposed into the surface layer and strain gradient was formed through the thickness of the sheet. The microstructure and texture in as-strained state were investigated by optical microscopy and X-ray diffraction technique. Ultra-fine grains in the surface layer of the titanium sheet were found to have a sharp texture with a preferred orientation strongly related to the FRSP direction. The evolution of microstructure and crystallographic texture of FRSPed samples during annealing were studied by electron back-scattered diffraction (EBSD) technique. Obvious preferred orientations of shear straining were obtained in the surface layer of both materials as a result from FRSP and subsequent annealing.


2017 ◽  
Vol 679 ◽  
pp. 504-510 ◽  
Author(s):  
W. Elmay ◽  
S. Berveiller ◽  
E. Patoor ◽  
T. Gloriant ◽  
F. Prima ◽  
...  

2011 ◽  
Vol 683 ◽  
pp. 95-102 ◽  
Author(s):  
Hao Yang ◽  
Peng Yang ◽  
Jing Mei Tao ◽  
Cai Ju Li ◽  
Xin Kun Zhu

Sacking fault energy (SFE) is the key role in solving this problem of getting high strength and expected ductility simultaneously. This work adds Al as the procedure of decreasing SFE in Cu face-centered cubic. It is an economic and effective method to counterpart Cold-rolling at liquid nitrogen temperature to get high density deformation twin and ultrafine-grains size. After undergoing tensile and X-ray diffraction tests, Cu-4.5 wt.% Al plays the best performance on both strength and ductility. Thus there exist the optimal SFE of Cu-Al alloys which get both high strength and expected ductility simultaneously.


2007 ◽  
Vol 561-565 ◽  
pp. 889-892
Author(s):  
Yan Dong Liu ◽  
He Tong ◽  
Q.W. Jiang ◽  
Y. Ren ◽  
Yan Dong Wang ◽  
...  

The microstructure characters of pure Iron during cold rolling were studied by HEXD (high-energy x-ray diffraction). The experimental result shows that the Debby ring of HEXD before cold rolling is discrete and very strong, the discrete diffraction points become continue and smooth with the increase of cold rolling reduction. The {001}<110> textures transform to the {001}<uvw> texture after cold rolling, in this process the grains divisional are analyzed by the HEXD result.


Sign in / Sign up

Export Citation Format

Share Document