FEM and Contour Method Study of Quenching Residual Stress of 7050 Aluminum Alloy Cross-Shaped Component

2017 ◽  
Vol 887 ◽  
pp. 89-95 ◽  
Author(s):  
Yang Li ◽  
Yun Xin Wu ◽  
Hai Gong ◽  
Feng Xiao

In order to study the quenching residual stress of typical aluminum alloy component used in aerospace, the finite element (FE) model of quenching process of 7050 aluminum alloy cross-shaped component was established based on heat transfer theory and elastic-plastic mechanics theory, the distribution regularities of quenching residual stress field of cross-shaped component was analyzed. The results indicate that the residual stress distribution of web of cross-shaped component is similar to the residual stress distribution of thick plate, the large tensile stress concentration is exist in web plate and the connection part of the stiffener with a certain influence area. The error data of the component contour deformation were processed and the component deformation contour was fitted, which makes the test result of the contour method and FE simulation result have good consistency. The results of the study provides guidance for quenching residual stress reduction of aviation aluminum alloy components and provides the basis for calculating of machining deformation of monolithic component.

2014 ◽  
Vol 996 ◽  
pp. 532-537
Author(s):  
Hai Gong ◽  
Yun Xin Wu ◽  
Zhao Peng Yang ◽  
Kai Liao

7050 aluminum alloy thick plates are usually heat treated and then aged to improve mechanical properties; however, residual stresses in the plates are developed during quenching. In this study, the influences of non-uniform factors on residual stresses in aluminum alloy thick plates during the quenching and stretching processes are studied. The results show strong inhomogeneity of the residual stress distribution in the plates, and the length of influenced area of the stretched plate is discussed.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 462
Author(s):  
Zhou Wang ◽  
Ming Shi ◽  
Jin Gan ◽  
Xiaoli Wang ◽  
Ying Yang ◽  
...  

In order to investigate the effect of shot distance and impact sequence on the residual stress distribution of 42CrMo steel in shot peening (SP) finite element (FE) simulation, 3D dynamic models with order dimple pattern and stochastic dimple pattern were established via ABAQUS/Explicit 6.14, and the simulation results were compared with experiments. The results show that shot overlap has a significant effect on the residual stress distribution of peened parts. Meanwhile, there is a threshold (related to SP parameter) for shot distance in the vertical and horizontal directions. When the shot distance is greater than the threshold in this direction, the residual stress distribution after SP tends to be stable. The impact sequence has almost no effect on the impact of a small number of shots, but this effect will appear when the number of shots increases. It is necessary to avoid shot overlap and continuous impact of adjacent dimples when the FE model is established; on this basis, the distance between shots and the number of layers of the shots can be reduced as much as possible without affecting the residual stress distribution. In addition, the comparison of simulation and experimental results shows that the residual stress evaluation area consistent with the experimental measurement is essential to obtain accurate residual stress distribution in the FE simulation process.


2020 ◽  
Vol 1003 ◽  
pp. 11-19
Author(s):  
Ya Nan Li ◽  
Yong An Zhang ◽  
Hong Lei Liu ◽  
Xin Yu Lv ◽  
Xi Wu Li ◽  
...  

Effect of multi-section linear non-uniform heat transfer coefficient on quenching residual stress distribution in 27mm-thick Al-Zn-Mg-Cu aluminum alloy plate was simulation studied by using the finite element method, and the surface quenching residual stress distribution was measured by the X-ray diffraction method and hole-drilling method. The results show that the surface quenching residual stress represents the same distribution with non-uniform heat transfer coefficient in the transverse direction and the stress level maintains initial stress level of the heat transfer coefficient at each location. The distribution of the quenching residual stress in the center of the plate is approximately uniform and the stress level is approximately equal to average of maximum and minimum initial stress level. The measured surface quenching residual stress shows a wavy distribution in the transverse direction, which is similar to the simulated surface stress distribution without considering the stress level. The measurement results can be explained by the multi-section linear non-uniform quenching model.


2015 ◽  
Vol 50 (22) ◽  
pp. 7262-7270 ◽  
Author(s):  
Pengfei Ji ◽  
Zhongyu Yang ◽  
Jin Zhang ◽  
Lin Zheng ◽  
Vincent Ji ◽  
...  

Author(s):  
Balaji Sadasivam ◽  
Alpay Hizal ◽  
Dwayne Arola

Recent advances in abrasive waterjet (AWJ) technology have resulted in new processes for surface treatment that are capable of introducing compressive residual stresses with simultaneous changes in the surface texture. While the surface residual stress resulting from AWJ peening has been examined, the subsurface residual stress field resulting from this process has not been evaluated. In the present investigation, the subsurface residual stress distribution resulting from AWJ peening of Ti6Al4V and ASTM A228 steel were studied. Treatments were conducted with the targets subjected to an elastic prestress ranging from 0 to 75% of the substrate yield strength. The surface residual stress ranged from 680 to 1487 MPa for Ti6Al4V and 720 to 1554 MPa for ASTM A228 steel; the depth ranged from 265 to 370 μm for Ti6Al4V and 550 to 680 μm for ASTM A228 steel. Results showed that elastic prestress may be used to increase the surface residual stress in AWJ peened components by up to 100%.


2013 ◽  
Vol 546 ◽  
pp. 127-131
Author(s):  
Zhi Qing Guo ◽  
Qiu Juan Lv ◽  
Yan Jiao Li ◽  
Chang Jiang Liu ◽  
Fang Xie

This paper use the software ANSYS to study the aluminum alloy (LF6) welding residual stress by numerical simulation and experimental study. The result indicates that the aluminum alloy (LF6) has the same residual stress distribution with others, there is a maximum value existing at the range of 4-5mm near the welding seam.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1179
Author(s):  
Fengxiang Shang ◽  
Jinxing Kong ◽  
Dongxing Du ◽  
Zheng Zhang ◽  
Yunhua Li

To reduce the influence of internal residual stress on the processing deformation of thin-walled hydrogen-resistant steel components, combined aging cryogenic and high-temperature treatment was used to eliminate the residual stress, and the effect of cryogenic process parameters on the initial residual stress of the specimens was compared and analyzed based on the contour method. X-ray diffraction, electron backscatter diffraction, and transmission electron microscopy were used to research the mechanism of the effect of cryogenic treatment on the internal residual stress of the specimen. After forging, the internal residual stress distribution of the hydrogen-resistant steel specimens without aging was characterized by tensile stress on the core and compressive stress on both sides, with a stress amplitude of −350–270 MPa. After compound treatment of -130 °C for 10 h and 350 °C for 2 h, the internal residual stress distribution remained unchanged, and the stresses decreased to −150–100 MPa. The internal residual stresses were reduced by 57%–63% compared with the untreated specimens. The cryogenic treatment did not cause phase transformation and carbide precipitation of the hydrogen-resistant steel material. Instead, grain refinement and dislocation density depletion were the main reasons for the reduction in internal residual stresses in the specimens.


Sign in / Sign up

Export Citation Format

Share Document