scholarly journals 4H-Silicon Carbide Wafer Surface after Chlorine Trifluoride Gas Etching

2018 ◽  
Vol 924 ◽  
pp. 369-372 ◽  
Author(s):  
Shogo Okuyama ◽  
Keisuke Kurashima ◽  
Ken Nakagomi ◽  
Hitoshi Habuka ◽  
Yoshinao Takahashi ◽  
...  

In order to develop the high etching rate reactor for silicon carbide, the 50-mm-diameter C-face 4H-silicon carbide wafer was etched using the chlorine trifluoride gas at 500 °C. By the deep etching, the concentric-circle-shaped valleys were formed at the positions corresponding to the radii of the pin-hole arrays of the gas distributor, as predicted by the calculation. The etching rate profile of 4H-silicon carbide was concluded to have a relationship with the local chlorine trifluoride gas supply . The wafer bow was small, even the wafer was very thin, about 160 μm thick.

2019 ◽  
Vol 963 ◽  
pp. 520-524
Author(s):  
Keisuke Kurashima ◽  
Ryohei Kawasaki ◽  
Kenta Irikura ◽  
Shogo Okuyama ◽  
Hitoshi Habuka ◽  
...  

The etching rate profile over the 50-mm diameter single-crystalline C-face 4H-SiC wafer by ClF3 gas was numerically evaluated by means of the numerical calculation accounting for the transport phenomena. The etching rate uniformity is expected to be improved by means of adjusting the pinhole diameter and their arrangement of the gas distributor.


2017 ◽  
Vol 897 ◽  
pp. 383-386 ◽  
Author(s):  
Ken Nakagomi ◽  
Shogo Okuyama ◽  
Hitoshi Habuka ◽  
Yoshinao Takahashi ◽  
Tomohisa Kato

A method to adjust the polycrystalline SiC etching rate was studied taking into account the chlorine trifluoride gas transport. The etching rate profile over the 50-mm-diameter SiC wafer could be made symmetrical by means of the wafer rotation. By activating and indeactivating the pin-holes at the various positions of the gas distributor, the etching rate profile could be locally adjusted.


2014 ◽  
Vol 778-780 ◽  
pp. 738-741 ◽  
Author(s):  
Dairi Yajima ◽  
Hitoshi Habuka ◽  
Tomohisa Kato

A SiC dry etching reactor using chlorine trifluoride (ClF3) gas was designed and evaluated with the help of numerical calculations and experimental results. The etching rate was about 16 μm/min when the ClF3 gas concentration, the total flow rate and the SiC substrate temperature were 90%, 0.3 slm and 500 °C, respectively. The gas stream above the substrate surface was concluded to significantly affect the etching rate profile.


2015 ◽  
Vol 821-823 ◽  
pp. 553-556 ◽  
Author(s):  
Dairi Yajima ◽  
Ken Nakagomi ◽  
Hitoshi Habuka ◽  
Tomohisa Kato

A SiC dry etcher using chlorine trifluoride (ClF3) gas was evaluated, particularly about the etching rate distribution. At 100%, the etching rate was high in the center region and was low in the outer region. However, that at 20% showed the opposite profile. This difference was considered to be due to the chlorine trifluoride gas distribution which was built above the gas distributor.


2015 ◽  
Vol 821-823 ◽  
pp. 537-540
Author(s):  
Ai Isohashi ◽  
Yasuhisa Sano ◽  
Tomohisa Kato ◽  
Kazuto Yamauchi

Catalyst-referred etching (CARE) is a planarization method based on the chemical etching reaction, which does not need abrasives. In this paper, CARE was applied to the planarization of 6-inch silicon carbide (SiC) wafers, and removal properties were investigated. The etching rate was about 20nm/h, which is almost equal to that of 2-inch SiC wafer (16 nm/h). The rms roughness was reduced along with the removal depth, and step-terrace structure was observed in whole area of the on-axis wafer surface.


2020 ◽  
Vol 1004 ◽  
pp. 167-172
Author(s):  
Ryohei Kawasaki ◽  
Kenta Irikura ◽  
Hitoshi Habuka ◽  
Yoshinao Takahashi ◽  
Tomohisa Kato

For improving the productivity of the semiconductor silicon carbide power devices, a very large diameter wafer process was studied, particularly for the non-plasma wafer etching using the chlorine trifluoride gas. Taking into account the motion of heavy gas, such as the chlorine trifluoride gas having the large molecular weight, the transport phenomena in the etching reactor were evaluated and designed using the computational fluid dynamics. The simple gas distributor design for a 200-mm-diameter wafer was evaluated in detail in order to uniformly spread the etchant gas over the wide wafer surface.


2020 ◽  
Vol 1004 ◽  
pp. 173-179
Author(s):  
Kenta Irikura ◽  
Ryohei Kawasaki ◽  
Hitoshi Habuka ◽  
Yoshinao Takahashi ◽  
Tomohisa Kato

A 50-mm diameter silicon carbide wafer thinning technique by means of a chemical reaction using a chlorine trifluoride (ClF3) gas was studied accounting for the gas distributor design and the total gas flow rate. The entire etching depth profile could become uniform with the increasing total gas flow rate at the fixed chlorine trifluoride gas concentration. A relationship between the pinhole arrangement of the gas distributor and the local etching rate profile was clarified by comparing the quick calculation and the measurement.


2011 ◽  
Vol 1346 ◽  
Author(s):  
C. Villeneuve ◽  
S. Pacchini ◽  
M. Dilhan ◽  
D. Colin ◽  
A. Brouzes ◽  
...  

ABSTRACTThis paper reviews our works about the development of thin composite film based on aligned carbon nanotubes (CNT) forest, embedded in epoxy or PMMA polymer matrix, in order to fabricate membranes dedicated to water purification issue. Indeed, the small internal radius of nanotubes, the smoothness of their inner core and the hydrophobic properties of its interna surface induce remarkable flowing properties for water molecules. In this article, thinnin technology process is investigated to obtain composite film with opened CNT. Different etching techniques as grinding, Chemical Mechanical Polishing (CMP) and isotropic plasma O2ar investigated in term of etching rate and membrane roughness, using AFM and SEM characterizations. Results show CMP process in lapping configuration permits to obtain agreement between high etching rate and membrane roughness. Moreover, to improve water flowing through membrane, O2plasma treatment is used to remove polymer residue spread over CNT. Joint use of lapping and plasma treatment permits to obtain 35μm-thick nanoporous membrane with well-opened protruding nanotubes.


Author(s):  
A A Osipov ◽  
A B Speshilova ◽  
E V Endiiarova ◽  
A A Osipov ◽  
S E Alexandrov

1992 ◽  
Vol 279 ◽  
Author(s):  
Kenji Gamo

ABSTRACTFocused ion beam (FIB) techniques have many advantages which stem from being maskless and have attracted much interest for various applications includingin situprocessing. However, reduction of damage and improvement of throughput are problems awaiting solution. For reduction of damage, low energy FIB is promising and for improvement of throughput, understanding of the basic processes and optimization of process parameters based on this understanding is crucial. This paper discusses characteristics of low energy FIB system, ion beam assisted etching and ion implantation, and effect of damage with putting emphasize onin situfabrication. Low energy (0.05–25keV) FIB system being developed forms -lOOnm diameter ion beams and is connected with molecular beam epitaxy system. Many results indicate that low damage, maskless ion beam assisted etching is feasible using low energy beams. Recently it was also shown that for ion beam assisted etching of GaAs, pulse irradiation yields very high etching rate of 500/ion. This indicates that the optimization of the relative ratio of ion irradiation and reactant gas supply as important to achieve high etching rate. Low energy FIB is also important for selective doping for high electron mobility heterostructures of GaAs/GaAlAs, because high mobility is significantly degraded by a slight damage.


Sign in / Sign up

Export Citation Format

Share Document