Optimization Simulation of Neutron Shielding Performance of Iron/Borated-Polyethylene Composite Structure

2018 ◽  
Vol 934 ◽  
pp. 61-65
Author(s):  
Ying Hong Zuo ◽  
Sheng Li Niu ◽  
Jin Hui Zhu

To obtain the optimization design of neutron shielding by iron/borated-polyethylene composite structure, we built a neutron shielding model of two layers of iron and borated-polyethylene. For neutron with various energies, the neutron transmission coefficients of iron/borated-polyethylene composite shield with different thicknesses were obtained by using Monte Carlo method. The simulation results show that, when neutron energy is 14 MeV and the total thickness of the composite shield is 40 cm, 60 cm and 80 cm, the optimal thickness ratio of iron to borated-polyethylene is about 0.7: 0.3, 0.725: 0.275, and 0.75: 0.25, respectively. The optimal thickness ratio of iron to borated-polyethylene is usually higher than the case of iron/polyethylene composite structure.

2018 ◽  
Vol 189 ◽  
pp. 02001
Author(s):  
Yinghong Zuo ◽  
Jinhui Zhu ◽  
Shengli Niu ◽  
Honggang Xie ◽  
Peng Shang

This study aims to get the optimization neutron shielding design of iron/polyethylene combined shield structure. The neutron transmission coefficient with various energies for different thickness of iron and polyethylene combined shield structure were calculated by using Monte Carlo method. The simulation results show that the optimization effect of iron/polyethylene combined shield is not obvious when the neutron energy is low or the shield is thin, there is an optimal thickness ratio of iron to polyethylene adopted to get the best neutron shielding performance when the energy of neutron source is above 2 MeV and the total thickness of combined shielding structure is more than 20 cm. The optimal thickness ratio of iron to polyethylene increases with the increasing energy of neutron source; with the increasing of neutron source energy ranging from 4 MeV to 14 MeV, the optimal thickness ratio of iron to polyethylene trends from 0.11 to nearly 1.6.


2013 ◽  
Vol 70 (5) ◽  
pp. 1505-1511 ◽  
Author(s):  
Noboru Nakamura ◽  
Lei Wang

Abstract It is shown that the classical quasigeostrophic two-layer model of baroclinic instability possesses an optimal ratio of layer thicknesses that maximizes the growth rate, given the basic-state shear (thermal wind), beta, and the mean Rossby radius. This ratio is interpreted as the vertical structure of the most unstable mode. For positive shear and beta, the optimal thickness of the lower layer approaches the midheight of the model in the limit of strong criticality (shear/beta) but it is proportional to criticality in the opposite limit. For a set of parameters typical of the earth’s midlatitudes, the growth rate maximizes at a lower-layer thickness substantially less than the midheight and at a correspondingly larger zonal wavenumber. It is demonstrated that a turbulent baroclinic jet whose statistical steady state is marginally critical when run with equal layer thicknesses can remain highly supercritical when run with a nearly optimal thickness ratio.


2019 ◽  
Vol 11 (19) ◽  
pp. 5543 ◽  
Author(s):  
Baek ◽  
Kim

This study develops a hybrid triple glazing technology that combines vacuum and carbon dioxide (CO2) gaps to help store CO2 in buildings. We determine the optimal thickness of glazing and calculate its thermal transmission (U-value). The amount of energy saved by using the proposed glazing system is then compared with that when using conventional insulating gases (air, argon, and krypton). Therm & Window, a modeling and analysis program for glazing, and EnergyPlus, a building environment and energy evaluation program, were used for the analysis. The optimal thickness determined for the vacuum and CO2 sections is 6.2 mm and 19 mm, respectively. The latter section comprises a 15-mm CO2 gap and 4 mm of glass. The total thickness of the glazing is 25.2 mm and the U-value is 0.259 W/m2∙K. The energy performance of the triple glazing using vacuum and CO2 gaps is between that of glazing using vacuum and air and that using vacuum and krypton gas gaps. Further, its performance is comparable to that of triple glazing using vacuum and argon gas gaps. Therefore, the hybrid triple glazing proposed in this paper represents an advanced glazing technique that can absorb CO2 and reduce energy consumption in buildings.


2012 ◽  
Vol 215-216 ◽  
pp. 433-437
Author(s):  
Ting Wang ◽  
Tao Yao ◽  
Guo Lin Duan

In view of the study of topology optimization design method on vibration and noise reduction of damping sandwich circular saw, the optimal thickness and layout of damping material were obtained. The optimization model of circular saw was established by using the coupling method, the optimum thickness of damping layer was found. By using ESO method, deleting elements method and modal loss factor sensitivity calculation method were obtained. Making use of modal loss factor sensitivity, ineffective elements were deleted by judging the whole structure damping effect on each damping material element, optimal configuration of damping sandwich circular saw structure under the stiffness condition was obtained, which reduced the vibration and noise and reached a certain stiffness requirements. By contrasting the damping loss factor of three different circular saw models, the results show that optimized circular saw structure has the best damping effect.


Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1361 ◽  
Author(s):  
David Manas ◽  
Miroslav Manas ◽  
Ales Mizera ◽  
Pavel Stoklasek ◽  
Jan Navratil ◽  
...  

This article discusses the possibilities of using radiation cross-linked high density polyethylene (HDPEx) acting as a filler in the original high density polyethylene (HDPE) matrix. The newly created composite is one of the possible answers to questions relating to the processing of radiation cross-linked thermoplastics. Radiation cross-linked networking is—nowadays, a commonly used technology that can significantly modify the properties of many types of thermoplastics. This paper describes the influence of the concentration of filler, in the form of grit or powder obtained by the grinding/milling of products/industrial waste from radiation cross-linked high density polyethylene (rHDPEx) on the mechanical and processing properties and the composite structure. It was determined that, by varying the concentration of the filler, it is possible to influence the mechanical behaviour of the composite. The mechanical properties of the new composite—measured at room temperature, are generally comparable or better than the same properties of the original thermoplastic. This creates very good assumptions for the effective and economically acceptable, processing of high density polyethylene (rHDPEx) waste. Its processability however, is limited; it can be processed by injection moulding up to 60 wt %.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Jingyu Zhai ◽  
Yugang Chen ◽  
Xinyuan Song ◽  
Hongchun Wu ◽  
Qingkai Han

For vibration damping, coatings are prepared on surface of the structures (substrates), which constitute the coating-substrate composite structures. Elastic parameters of the coating are indispensable for the vibration and damping analysis of the composite structure. Due to the small scale of coating thickness and elastic difference compared with the substrate, the identification results are inevitably influenced by the existence of substrate. Moreover, resulting from the preparation process, elastic properties of hard coating often exhibit anisotropic properties. All the above factors bring about the difficulties of accurate identification. In this study, a method for identifying anisotropic elastic parameters of hard coatings considering substrate effect is proposed, by combining nanoindentation and finite element analysis. Based on the identification results, finite element models are established to analyze the vibration characteristics of the coating-substrate composite structure, which verify the rationality of the anisotropic elastic parameters for vibration analysis. The studies in this paper are significant to more accurately identify the mechanical parameters for establishing the dynamic model. Moreover, they lay the foundation for further optimization design of hard coating damping.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Sarai Lekchaum ◽  
Kitsakorn Locharoenrat

This contribution is aimed at designing the optimal thickness of lead-iron double-layer container to store a radioactive waste releasing the photon energy at 1.3325 MeV and initial radiation intensity at 100 mSv/hr using the optimization design by MATLAB software. This design consisted of three parts of calculations to achieve 1000 times the radiation attenuation of container. The first was the logarithmic interpolation for the mass attenuation coefficient. The second was the bilogarithmic interpolation for the exposure buildup factor. The third was the contour-plotting analytical technique for the optimal thickness of radiation container. The values of mass attenuation coefficient and exposure buildup factor were exactly validated as compared with the standard reference database. Furthermore, we have found that the optimal thickness was 3.2 cm for lead (1st layer) and 17.0 cm for iron (2nd layer). Container weight was 994.30 kg, whilst container cost was 167.30 USD. The benefit of our design can quickly and precisely apply for the radiation safety assessment of the occupational radiation workers who always work in the nuclear reactor area.


Author(s):  
Treetep Saengow ◽  
Salinee Choowitsakunlert ◽  
Rardchawadee Silapunt

AbstractThis paper describes the magnetoelectric (ME) coupling behavior of the nano bi-layer L-T (longitudinal-transverse) mode bar structure through the ME coefficient mathematical model that is developed in high frequency regime. Terfenol-D and Lead Zirconate Titanate (PZT) are used as ferromagnetic (FM) and ferroelectric (FE) layers, respectively. The ME coefficients are determined at different layer thickness ratios and products of the operating frequency (f) and structure length (l). It is found that the ME coefficient and optimal thickness ratio increases and decreases exponentially respectively, with fl. The minimum and maximum peak ME coefficients at fl values of 0.1 and 1,200 respectively, are around 1,756 and 5,617 mV/Oe$$\cdot $$ · cm with the optimal thickness ratio of 0.43 and 0.19, respectively. The ME coupling behavior depends largely on the magnetostrictive effect in the FM layer that is altered by the applied magnetic field and fl. The demonstration as the read sensor for the hard disk drive (HDD) with 2 Tbit/in2 areal density and 190 Oe/bit applied magnetic field shows the output voltage across the FE layer of around 0.43 mV, which is more than sufficient for the raw signal readback.


Sign in / Sign up

Export Citation Format

Share Document