Radiation Effects on 1.7kV Class 4H-SiC Power Devices: Development of Compact Simulation Models

2019 ◽  
Vol 963 ◽  
pp. 718-721
Author(s):  
Pavel Hazdra ◽  
Stanislav Popelka

Compact simulation models of two key silicon carbide power components, the Junction Barrier Schottky diode and the power MOSFET, which are taking into account the effect of irradiation by highenergy electrons, were developed. Two 1.7 kV class devices: the 14 A JBS diode C3D10170H and the 5 A SiC power MOSFETs C2M1000170D produced by Wolfspeed were irradiated by 4.5 MeV electrons in the dose range up to 2000 kGy. Electrical characteristics were measured prior to and after irradiation. Radiation defects were studied by deep level transient spectroscopy and the effect of irradiation on device characteristics was established. SPICE models taking into account the irradiation fluence were proposed and calibrated using the parameters extracted from experiment. Simulated characteristics show a very good agreement with reality.

2015 ◽  
Vol 821-823 ◽  
pp. 785-788 ◽  
Author(s):  
Pavel Hazdra ◽  
Stanislav Popelka ◽  
Vít Zahlava

Commercial 1200V and 1700V MPS diodes and 1700V vertical JFETs produced on 4H-SiC n-type epilayers were neutron irradiated with fluences up to 4x1014 cm-2 (1 MeV neutron equivalent Si). Radiation defects and their effect on carrier removal were investigated by capacitance deep-level transient spectroscopy, I-V and C-V measurement. Results show that neutron irradiation introduces different point defects giving rise to deep acceptor levels which compensate nitrogen doping of the epilayer. The carrier removal rate increases linearly with nitrogen doping. Introduced defects deteriorate ON-state characteristics of irradiated devices while their effect on blocking characteristics is negligible. The effect of neutron irradiation can be simulated by TCAD tools using a simple model accounting for introduction of one dominant deep level (Z1/Z2 centre).


1985 ◽  
Vol 48 ◽  
Author(s):  
Peiching Ling ◽  
Jyh-Kao Chang ◽  
Min-Shyong Lin ◽  
Jen-Chung Lou

ABSTRACTThe electrical characteristics and the microstructure of Mo/GaAs Schottky diodes fabricated by electron-beam evaporation have been studied. The barrier height, ideality factor, deep trapping levels and intermetallic compounds of these annealed or unannealed Mo/GaAs Schottky diodes are obtained by using the I-V, C-V, Rutherford backscattering spectroscopy (RBS), Auger electron spectroscopy (AES), deep level transient spectroscopy (DLTS) and transmission electron microscopy (TEM) analyses. An obvious interdiffusion at Mo/GaAs interface is observed in Mo/GaAs Schottky diodes annealed above 500°C for 10 min. DLTS results show that there are two electron traps [Ec-(0.52±0.02)'eV and Ec-(0.86±0.02) eV] and one hole trap [Ev+(0.92±0.02) eV] are demonstrated for 300°C, 400°C post-annealed Mo/GaAs diodes. TEM results also indicate that the disappearance of these deep trapping levels may correlated to the formation of intermetallic compounds GaMo3 and MoAs2 existed in Mo/GaAs diodes post-annealed above 500°C. It is believed that the metal-semiconductor interdiffusion and the intermetallic compounds play the major roles for the thermal degradation of Mo/GaAs Schottky diodes.


1991 ◽  
Vol 223 ◽  
Author(s):  
A. Vaseashta ◽  
L. C. Burton

ABSTRACTKinetics of persistent photoconductivity, photoquenching, and thermal and optical recovery observed in low energy Ar+ bombarded on (100) GaAs surfaces have been investigated. Rate and transport equations for these processes were derived and simulated employing transport parameters, trap locations and densities determined by deep level transient spectroscopy. Excellent correlation was obtained between the results of preliminary simulation and the experimentally observed values. The exponential decay of persistent photoconductivity response curve was determined to be due to metastable electron traps with longer lifetime and is consistent with an earlier proposed model.


2002 ◽  
Vol 719 ◽  
Author(s):  
Masashi Kato ◽  
Masaya Ichimura ◽  
Eisuke Arai ◽  
Shigehiro Nishino

AbstractEpitaxial layers of 4H-SiC are grown on (0001) substrates inclined toward <1120> and <1100> directions. Defects in these films are characterized by deep level transient spectroscopy (DLTS) in order to clarify the dependence of concentrations and activation energies on substrate inclination. DLTS results show no such dependence on substrate inclination but show thickness dependence of the concentration.


Author(s):  
N. Chinone ◽  
Y. Cho ◽  
R. Kosugi ◽  
Y. Tanaka ◽  
S. Harada ◽  
...  

Abstract A new technique for local deep level transient spectroscopy (DLTS) imaging using super-higher-order scanning nonlinear dielectric microscopy is proposed. Using this technique. SiCVSiC structure samples with different post oxidation annealing conditions were measured. We observed that the local DLTS signal decreases with post oxidation annealing (POA), which agrees with the well-known phenomena that POA reduces trap density. Furthermore, obtained local DLTS images had dark and bright areas, which is considered to show the trap distribution at/near SiCVSiC interface.


2004 ◽  
Author(s):  
Souvick Mitra ◽  
Mulpuri V. Rao ◽  
N. Papanicolaou ◽  
K. A. Jones ◽  
M. Derenge

1997 ◽  
Vol 482 ◽  
Author(s):  
Z-Q. Fang ◽  
J. W. Hemsky ◽  
D. C. Look ◽  
M. P. Mack ◽  
R. J. Molnar ◽  
...  

AbstractA 1-MeV-electron-irradiation (EI) induced trap at Ec-0.18 eV is found in n-type GaN by deep level transient spectroscopy (DLTS) measurements on Schottky barrier diodes, fabricated on both metal-organic-chemical-vapor-deposition and hydride-vapor-phase-epitaxy material grown on sapphire. The 300-K carrier concentrations of the two materials are 2.3 × 1016 cm−3 and 1.3 × 1017 cm−3, respectively. Up to an irradiation dose of 1 × 1015 cm−2, the electron concentrations and pre-existing traps in the GaN layers are not significantly affected, while the EI-induced trap is produced at a rate of at least 0.2 cm−1. The DLTS peaks in the two materials are shifted slightly, possibly due to electric-field effects. Comparison with theory suggests that the defect is most likely associated with the N vacancy or Ga interstitial.


Sign in / Sign up

Export Citation Format

Share Document