Study of gamma-ray radiation effects on the passivation properties of atomic layer deposited Al2O3 on silicon using deep-level transient spectroscopy

2018 ◽  
Vol 30 (2) ◽  
pp. 1148-1152
Author(s):  
Zhe Chen ◽  
Peng Dong ◽  
Meng Xie ◽  
Yun Li ◽  
Xuegong Yu ◽  
...  
2019 ◽  
Vol 963 ◽  
pp. 718-721
Author(s):  
Pavel Hazdra ◽  
Stanislav Popelka

Compact simulation models of two key silicon carbide power components, the Junction Barrier Schottky diode and the power MOSFET, which are taking into account the effect of irradiation by highenergy electrons, were developed. Two 1.7 kV class devices: the 14 A JBS diode C3D10170H and the 5 A SiC power MOSFETs C2M1000170D produced by Wolfspeed were irradiated by 4.5 MeV electrons in the dose range up to 2000 kGy. Electrical characteristics were measured prior to and after irradiation. Radiation defects were studied by deep level transient spectroscopy and the effect of irradiation on device characteristics was established. SPICE models taking into account the irradiation fluence were proposed and calibrated using the parameters extracted from experiment. Simulated characteristics show a very good agreement with reality.


1991 ◽  
Vol 223 ◽  
Author(s):  
A. Vaseashta ◽  
L. C. Burton

ABSTRACTKinetics of persistent photoconductivity, photoquenching, and thermal and optical recovery observed in low energy Ar+ bombarded on (100) GaAs surfaces have been investigated. Rate and transport equations for these processes were derived and simulated employing transport parameters, trap locations and densities determined by deep level transient spectroscopy. Excellent correlation was obtained between the results of preliminary simulation and the experimentally observed values. The exponential decay of persistent photoconductivity response curve was determined to be due to metastable electron traps with longer lifetime and is consistent with an earlier proposed model.


2002 ◽  
Vol 719 ◽  
Author(s):  
Masashi Kato ◽  
Masaya Ichimura ◽  
Eisuke Arai ◽  
Shigehiro Nishino

AbstractEpitaxial layers of 4H-SiC are grown on (0001) substrates inclined toward <1120> and <1100> directions. Defects in these films are characterized by deep level transient spectroscopy (DLTS) in order to clarify the dependence of concentrations and activation energies on substrate inclination. DLTS results show no such dependence on substrate inclination but show thickness dependence of the concentration.


Author(s):  
N. Chinone ◽  
Y. Cho ◽  
R. Kosugi ◽  
Y. Tanaka ◽  
S. Harada ◽  
...  

Abstract A new technique for local deep level transient spectroscopy (DLTS) imaging using super-higher-order scanning nonlinear dielectric microscopy is proposed. Using this technique. SiCVSiC structure samples with different post oxidation annealing conditions were measured. We observed that the local DLTS signal decreases with post oxidation annealing (POA), which agrees with the well-known phenomena that POA reduces trap density. Furthermore, obtained local DLTS images had dark and bright areas, which is considered to show the trap distribution at/near SiCVSiC interface.


Sign in / Sign up

Export Citation Format

Share Document