Tribological Analysis by Concentration Effect of Boron Carbide and Graphite on the Aluminum Composites

2019 ◽  
Vol 969 ◽  
pp. 163-168
Author(s):  
K. Rajkumar ◽  
Subramanian Varun ◽  
Ganesh Prasanna ◽  
Chellu Sreyas ◽  
A. Gnanavelbabu

Aluminium matrix composites (AMCs) are indispensable materials used extensively in the aerospace and automobile industries and are highly endorsed due to their good mechanical properties. In this paper, various compositions of the AMCs were fabricated, tested and analyzed using pin on disc tribometer test to understand the tribological behaviour and wear mechanism properties. The volume percentages of the Aluminium composite reinforced with boron carbide and graphite present in the form of Al-B4C-Graphite are Al-B4C (5%)-Graphite (5%), Al-B4C (10%)-Graphite (5%), Al-B4C (5%)-Graphite (15%), Al-B4C (10%)-Graphite (15%), Al-B4C (15%)-Graphite (15%). Loads were varied in steps of 10N, from 10N to 50N while the sliding velocity was correspondingly set as 0.7, 1.4 and 2.1m/s. SEM image analysis was conducted to understand surface tribology after wear tests. The composite Al-B4C (15%)-Graphite (15%) exhibited best wear resistance which can be credited to the bearing capacity of boron carbide particles and adherent graphite layer.

2011 ◽  
Vol 482 ◽  
pp. 89-100 ◽  
Author(s):  
Solisabel Orozco Gomez ◽  
Karl Delbé ◽  
Alberto Benitez ◽  
Jean Yves Paris ◽  
Jean Denape

Materials used as friction components in transportation field are subjected to extreme working conditions: they rapidly reach their structural limits and critical parts require to be regularly replaced. Alternative solutions withstanding higher operating conditions imply to find innovative materials. Steel matrix composites including various solid lubricants, WS2 and h-BN, able to support high temperatures were developed using a Spark Plasma Sintering technique, which makes possible the formation of new microstructures out of reach by conventional means. Sliding tests were conducted using a pin-on-disc tribometer in air at 450°C, with a normal load of 15 N and various velocities ranged from 0.1 to 1.5 m/s. Influence of solid lubricant content and sensitivity to test parameters were studied in terms of friction and wear responses of the contacting materials. Test results reveal an improvement of friction properties for composites containing highest WS2contents. A reduction of wear is quantified for all composites, and the best behaviour is observed for those that contain WS2. In agreement with the third body approach, interpretations are proposed to describe the interphase dynamics within the contact.


Author(s):  
J. Quintelier ◽  
P. Samyn ◽  
P. De Baets ◽  
J. Degrieck

On a Pin-on-Disc test rig with composite disc and steel pin tribological experiments were done on pultruded glass fiber reinforced polymer matrix composites plates. The wear and frictional behavior strongly depends on the structure. Also the normal load plays an important role in the frictional behavior, which is of greater importance than the speed. The formation of a thin polymer film onto the wear track results in a lowering of the coefficient of friction with 20%.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 193
Author(s):  
M.H. Faisal ◽  
S. Prabagaran ◽  
T.S. Vishnu

Aluminium/graphite composites are the need of modern times for addressing the fuel saving issues. The graphite in such composites act as solid lubricant and it reduce external fuel requirements. But such composites are having degraded mechanical properties due to the graphite content in composite. In order to solve the negative effect of graphite on mechanical properties of LM13/Gr self-lubricating composite this study was conducted to find out the mechanical properties of LM13/B4C/Gr Metal Matrix Composites. Boron carbide was selected as reinforcement because of its better reinforcement properties compared to alumina and silicon carbide. The properties of the hybrid composites were compared with the LM13/Gr self-lubricating composite to study the enhancement in mechanical properties that has been caused by the boron carbide particles. Using computerized universal testing machine and rock-well hardness tester mechanical properties such as hardness and tensile strength were tested. Pin on disk testing machine was used to analyse the wear behavior. The test results indicates that by raising weight % of boron carbide particles in the LM13, tensile strength and hardness of the hybrid composites was increased compared to self-lubricating composite accompanied by better tribological properties.


2007 ◽  
Vol 353-358 ◽  
pp. 898-901 ◽  
Author(s):  
Xue Tong Sun ◽  
Cheng Xin Lin

In the present work, the wear behaviour of coatings produced on Ti-6Al-4V alloy by micro-arc oxidation method was studied. The wear tests were performed using a pin-on-disc wear machine under dry sliding conditions. It is found that the MAO coating can efficiently improve the wear-resistant performance of Ti alloy in the test range of this paper. The coated samples demonstrated wear rates up to 5-12 times lower than that of the uncoated substrates tested. The wear behaviours are deeply characterized by the variations of coating structure and composition.


Author(s):  
JL Viesca ◽  
S González-Cachón ◽  
A García ◽  
R González ◽  
A Hernández Battez

This paper compares the tribological behaviour of microalloyed rail steel with conventional C–Mn rail steel under different test conditions (load, temperature and humidity). Pin-on-disc tribological tests were performed inside a climate chamber under different loads (20, 30 and 40 N), relative humidity (15, 55 and 70%) and temperatures (20 and 40 ℃). After the friction and wear tests, the worn surfaces were analysed using both confocal and scanning electron microscopies. The results obtained show that the use of microalloyed steel in railway applications under severe conditions (high loads and humidity) could lead to increased service life of the rails and could extend the time between maintenance operations.


2012 ◽  
Vol 498 ◽  
pp. 89-101 ◽  
Author(s):  
Karl Delbé ◽  
Solisabel Orozco Gomez ◽  
Juan Manuel Carrillo Mancuso ◽  
Jean Yves Paris ◽  
Jean Denape

Extreme working conditions affect material used as friction components in transportation field: they rapidly reach their limits and critical parts require to be regularly replaced. Alternative solutions withstanding higher operating conditions imply to find innovative materials. Stellite matrix composites including various solid lubricants, WS2 and h-BN, able to admitextreme conditions were developed using a Spark Plasma Sintering technique, which makes possible the formation of new microstructures out of reach by conventional means. Sliding tests were conducted using a pin-on-disc tribometer in air at 450°C, with a velocity of 0,25 m/s and various normal load ranged from 2.5 to 40 N. Influence of solid lubricant content and sensitivity to test parameters were studied in terms of friction and wear responses of the contacting materials. Friction properties are equivalent to Stellite ones and sometimes lesseffective. A reduction of wear is quantified for many composites, and the best behavior is observed for those that contain WS2. In agreement with the third body approach, interpretations are proposed to describe the interphase dynamics within the contact.


2015 ◽  
Vol 813-814 ◽  
pp. 74-78 ◽  
Author(s):  
K. Ragupathy ◽  
C. Velmurugan ◽  
S. Rajesh ◽  
D.S. Ebenezer Jacob Dhas

Aluminium matrix composites are mostly used in aerospace and automobile industries due to their improved properties such as hardness, strength, wear resistance combined with considerable weight savings over unreinforced alloys. This paper reports the lubricated wear behavior of Al6061composites reinforced with titanium carbide particles fabricated by stir casting route. The experiments were conducted using central composite rotatable design method. The wear test was performed on the pin on disc machine where aluminium composite pins were rubbed against EN31 steel discs in the presence lubricant. A mathematical model has been developed by response surface methodology. The validity of the developed model was checked by Analysis of variance method. The experimental results revealed that the addition of lubricant at the contact surface reduced wear rate of the composite.


Sign in / Sign up

Export Citation Format

Share Document