Microstructural and Textural Evolutions of OFHC Cu during the CECC Process and Annealing Treatment

2020 ◽  
Vol 993 ◽  
pp. 434-444
Author(s):  
Yang Wu ◽  
Da Yu Shu ◽  
Jun Cen Qu ◽  
Gao Zhan Zhao ◽  
Mao Chuan Wang

The bulk Cu billets with ultrafine-grained microstructure were successfully processed from full-annealed coarse grained oxygen-free high conductivity (OFHC) Cu by the cyclic extrusion and closed compression (CECC), subsequently annealed at different temperatures. The evolution of the microstructure and mechanical properties was systematically studied. The results show that the effective strain per CECC process is ε=2.77, with further annealing treatment, a high-efficiency grain refinement is realized. After two cycles of CECC process and annealing at 350 °C for 1 h, the grain size refined to ~3 μm, the tensile strength increased to 280 MPa with a high ductility of 54%. Furthermore, a homogeneous structure and mechanical properties in the bulk copper billets for post-forging could be obtained.

2007 ◽  
Vol 7 (11) ◽  
pp. 3765-3770 ◽  
Author(s):  
Nobuhiro Tsuji

Recently, it becomes possible to fabricate bulk metals having ultrafine grained or nanocrystalline structures of which grain size is in nano-meter dimensions. One of the promising ways to realize bulk nanostructured metals is severe plastic deformation (SPD) above logarithmic equivalent strain of 4. We have developed an original SPD process, named Accumulative Roll Bonding (ARB) using rolling deformation in principle, and have succeeded in fabricating bulk nanostructured sheets of various kinds of metals and alloys. The ARB process and the nanostructured metals fabricated by the ARB are introduced in this paper. The nanostructured metals sometimes perform quite unique mechanical properties, that is rather surprising compared with conventionally coarse grained materials. The unique properties seem to be attributed to the characteristic structures of the nano-metals full of grain boundaries.


2007 ◽  
Vol 7 (11) ◽  
pp. 3765-3770 ◽  
Author(s):  
Nobuhiro Tsuji

Recently, it becomes possible to fabricate bulk metals having ultrafine grained or nanocrystalline structures of which grain size is in nano-meter dimensions. One of the promising ways to realize bulk nanostructured metals is severe plastic deformation (SPD) above logarithmic equivalent strain of 4. We have developed an original SPD process, named Accumulative Roll Bonding (ARB) using rolling deformation in principle, and have succeeded in fabricating bulk nanostructured sheets of various kinds of metals and alloys. The ARB process and the nanostructured metals fabricated by the ARB are introduced in this paper. The nanostructured metals sometimes perform quite unique mechanical properties, that is rather surprising compared with conventionally coarse grained materials. The unique properties seem to be attributed to the characteristic structures of the nano-metals full of grain boundaries.


2012 ◽  
Vol 706-709 ◽  
pp. 1859-1863 ◽  
Author(s):  
Sergey V. Zherebtsov ◽  
Sergey Kostjuchenko ◽  
Egor A. Kudryavtsev ◽  
Svetlana Malysheva ◽  
Maria A. Murzinova ◽  
...  

The mechanical properties of two-phase Ti-6Al-4V titanium alloy with ultrafine grained microstructure were studied in the present work. Bulk ultrafine grained specimens of the alloy were produced by means of warm “abc” deformation. The final structure consisted of α/β particles with a size of 500 nm. Extensive studies of the mechanical properties of this material in comparison with conventionally heat-strengthened condition were conducted. A room-temperature strength and fatigue resistance of the ultrafine grained material was found to be 25-40% higher than that of heat-strengthened alloy. However such ductility related properties as tensile elongation and impact toughness noticeably decreased with decreasing grain size. Efficacy of ductility improvement and the strength/ductility balance optimization were analyzed.


2006 ◽  
Vol 503-504 ◽  
pp. 663-668 ◽  
Author(s):  
Jing Tao Wang ◽  
Zhong Ze Du ◽  
Feng Kang ◽  
Guang Chen

Pure copper (99.98%wt) square bars (32x32 mm) were processed by equal channel angular pressing (ECAP) Microstructure evolution was characterized by microscopy. Room temperature mechanical properties were obtained by tensile and micro-hardness tests. With increasing number of ECAP passes and cold rolling reductions, the initial coarse grained structure in the as-received material was transformed gradually into an ultrafine grained microstructure with an average grain size of 0.2~0.3 μm. Subsequent rolling resulted deformation twining in this ultrafine grained microstructure, which gives further strengthening in addition to the strengthening obtained by ECAP. Property anisotropy in three orthogonal directions of samples processed by ECAP was characterized by tensile testing.


2021 ◽  
Vol 410 ◽  
pp. 123-127
Author(s):  
Abdrakhman B. Naizabekov ◽  
Dmitry V. Kuis ◽  
Andrey V. Kasperovich

The article presents the results of the analysis of the microstructure and mechanical properties of titanium nickelide formed during pressing in an equal-channel angular matrix with a quasi-small angle of channels intersection. The conducted studies have shown that pressing in an equal-channel angular matrix with a quasi-small angle of channels intersection ensures the formation of a homogeneous sub-ultrafine-grained structure in the titanium nickelide alloy, while the average grain size, decreasing by 100-200 times, is 0.3-0.5 microns, and the tensile strength increases to 1350 MPa in 6 passes, which is almost 90% higher than in the coarse-grained quenched state.


2015 ◽  
Vol 60 (2) ◽  
pp. 605-614 ◽  
Author(s):  
T. Kvačkaj ◽  
A. Kováčová ◽  
J. Bidulská ◽  
R. Bidulský ◽  
R. Kočičko

AbstractIn this study, static, dynamic and tribological properties of ultrafine-grained (UFG) oxygen-free high thermal conductivity (OFHC) copper were investigated in detail. In order to evaluate the mechanical behaviour at different strain rates, OFHC copper was tested using two devices resulting in static and dynamic regimes. Moreover, the copper was subjected to two different processing methods, which made possible to study the influence of structure. The study of strain rate and microstructure was focused on progress in the mechanical properties after tensile tests. It was found that the strain rate is an important parameter affecting mechanical properties of copper. The ultimate tensile strength increased with the strain rate increasing and this effect was more visible at high strain rates$({\dot \varepsilon} \sim 10^2 \;{\rm{s}}^{ - 1} )$. However, the reduction of area had a different progress depending on microstructural features of materials (coarse-grained vs. ultrafine-grained structure) and introduced strain rate conditions during plastic deformation (static vs. dynamic regime). The wear behaviour of copper was investigated through pin-on-disk tests. The wear tracks examination showed that the delamination and the mild oxidational wears are the main wear mechanisms.


2008 ◽  
Vol 584-586 ◽  
pp. 182-187
Author(s):  
Lilia Kurmanaeva ◽  
Yulia Ivanisenko ◽  
J. Markmann ◽  
Ruslan Valiev ◽  
Hans Jorg Fecht

Investigations of mechanical properties of nanocrystalline (nc) materials are still in interest of materials science, because they offer wide application as structural materials thanks to their outstanding mechanical properties. NC materials demonstrate superior hardness and strength as compared with their coarse grained counterparts, but very often they possess a limited ductility or show low uniform elongation due to poor strain hardening ability. Here, we present the results of investigation of the microstructure and mechanical properties of nc Pd and Pd-x%Ag (x=20, 60) alloys. The initially coarse grained Pd-x% Ag samples were processed by high pressure torsion, which resulted in formation of homogenous ultrafine grain structure. The increase of Ag contents led to the decrease of the resulted grain size and change in deformation behavior, because of decreasing of stacking fault energy (SFE). The samples with larger Ag contents demonstrated the higher values of hardness, yield stress and ultimate stress. Remarkably the uniform elongation had also increased with increase of strength.


2010 ◽  
Vol 667-669 ◽  
pp. 253-258
Author(s):  
Wei Ping Hu ◽  
Si Yuan Zhang ◽  
Xiao Yu He ◽  
Zhen Yang Liu ◽  
Rolf Berghammer ◽  
...  

An aged Al-5Zn-1.6Mg alloy with fine η' precipitates was grain refined to ~100 nm grain size by severe plastic deformation (SPD). Microstructure evolution during SPD and mechanical behaviour after SPD of the alloy were characterized by electron microscopy and tensile, compression as well as nanoindentation tests. The influence of η' precipitates on microstructure and mechanical properties of ultrafine grained Al-Zn-Mg alloy is discussed with respect to their effect on dislocation configurations and deformation mechanisms during processing of the alloy.


2013 ◽  
Vol 803 ◽  
pp. 226-229
Author(s):  
Da Ran Fang ◽  
Chun Liu ◽  
Feng Fang Liu

Al-3.9wt.%Cu alloy was subjected to equal channel angular pressing (ECAP) and subsequent low temperature annealing treatment, and the corrosion resistance of the samples was investigated by potentiodynamic polarization measurements in 3.5% NaCl solution. The results show that the corrosion rate of the ultrafine-grained alloy increases, in comparison with the coarse-grained alloy. Meanwhile, it is noted that the corrosion resistance of the alloy subjected to ECAP can be improved by relief annealing.


Sign in / Sign up

Export Citation Format

Share Document