Fabrication and Characterization of Composite Materials Using Multiple Waste Materials (Leather & Jute Fabrics) and Unsaturated Polyester Resin

2021 ◽  
Vol 33 ◽  
pp. 1-11
Author(s):  
Md. Farhad Ali ◽  
Md. Sahadat Hossain ◽  
Samina Ahmed ◽  
A.M. Sarwaruddin Chowdhury

Now a days environment is getting polluted due to different types of manmade reasons than ever for extreme use of synthetic materials. Various kinds of waste materials from numerous industries are also enhancing this. So, Utilization of waste materials and reduction of synthetic materials will definitely subside the environmental pollution. In this research, waste jute fabric and leather waste (cow hides) were used as reinforcing agent and unsaturated polyester resin (UPR) as matrix to prepare environmental friendly composite materials. Hand-lay up method was conducted to fabricate composite materials. Different percentages of waste leather and used jute fabrics were used with the UPR. Improved mechanical properties, tensile strength (TS), tensile modulus (TM), and percentage elongation at break (EB) were observed with the certain percentage of waste materials. Composites were also characterised by the scanning electron microscope (SEM) and fourier transform infrared (FTIR).

2019 ◽  
Vol 25 ◽  
pp. 22-31 ◽  
Author(s):  
Farhana Islam ◽  
M. Naimul Islam ◽  
Shahirin Shahida ◽  
Harun Ar Rashid ◽  
Nanda Karmaker ◽  
...  

Jute fabrics reinforced Unsaturated Polyester Resin (UPR)-based composites were prepared by conventional hand lay-up technique. Different proportions (5 to 50% by weight) of fibre content was used in preparation of the composite. Tensile Strength (TS), Tensile Modulus (TM), Bending Modulus (BM), Bending Strength (BS), Impact Strength (IS) of the fabricated composites were studied. Upon each addition of fiber content in the matrix, mechanical properties of the composites were increased. The Tensile Strength (TS) of the 5% and 50% fiber reinforced composites was 18 MPa and 42 MPa respectively. Scanning Electron Microscopy (SEM) showed interfacial properties of the composites and it was revealed that the bond between fiber and matrix was excellent.


2019 ◽  
Vol 1156 ◽  
pp. 60-68 ◽  
Author(s):  
Kamrun N. Keya ◽  
Nasrin A. Kona ◽  
Md. Sahadat Hossain ◽  
Md. Razzak ◽  
Md. Naimul Islam ◽  
...  

Jute fabrics reinforced Polypropylene (PP) matrix composite was fabricated by compression molding and Unsaturated Polyester Resin (UPR) matrix composites were also fabricated by hand lay-up technique. The fiber content of the composites was 40% by weight. Mechanical properties between two types of composites were compared. Tensile Strength (TS), Tensile Modulus (TM), Elongation at break (Eb%) , and Impact Strength (IS) of the jute fabrics/PP composites were found to be 47 MPa, 1.2 GPa, 13% and 8 kg/cm, respectively. On the other hand, TS, TM, Eb%, and IS of the jute fabrics/UPR composite were found to be 43 MPa, 1.3 GPa, 10% and 6 kg/cm, respectively. It was found that both composites showed almost similar mechanical properties. After tensile testing, fracture sides of both types of the composites were studied by Scanning Electron Microscope (SEM) and the results revealed poor fiber matrix adhesion for jute fabrics with PP and UPR. The fabricated composites became partly biodegradable because of jute (natural fiber) and mechanical properties of both types of composites showed promising results for commercial applications.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4273
Author(s):  
Jian Zhang ◽  
Xiaojun Wang ◽  
Xinjun Fu

Chopped carbon fiber-reinforced low-density unsaturated polyester resin (CCFR-LDUPR) composite materials with light weight and high mechanical properties were prepared at low temperature and under the synergistic action of methyl ethyl ketone peroxide (MEKP-II) and cobalt naphthenate. Optimal preparation conditions were obtained through an orthogonal experiment, which were preparation temperature at 58.0 °C, 2.00 parts per hundred of resin (phr) of NH4HCO3, 4.00 phr of chopped carbon fibers (CCFs) in a length of 6.0 mm, 1.25 phr of initiator and 0.08 phr of cobalt naphthenate. CCFR-LDUPR composite sample presented its optimal properties for which the density (ρ) was 0.58 ± 0.02 g·cm−3 and the specific compressive strength (Ps) was 53.56 ± 0.83 MPa·g−1·cm3, which is 38.9% higher than that of chopped glass fiber-reinforced low-density unsaturated polyester resin (CGFR-LDUPR) composite materials. Synergistic effects of initiator and accelerator accelerated the specific polymerization of resin in facile preparation at low temperature. Unique “dimples”, “plate microstructure” and “surface defect” fabricated the specific microstructure of the matrix of CCFR-LDUPR composite samples, which was different from that of cured unsaturated polyester resin (UPR) with “body defect” or that of CGFR-LDUPR with coexistence of “surface defect” and “body defect”.


2019 ◽  
Vol 24 ◽  
pp. 1-7
Author(s):  
Md. Naimul Islam ◽  
Harun Ar-Rashid ◽  
Farhana Islam ◽  
Nanda Karmaker ◽  
Farjana A. Koly ◽  
...  

E-glass fiber mat reinforced Unsaturated Polyester Resin (UPR)-based composites were fabricated by conventional hand lay-up technique. The fiber content was varied from 5 to 50% by weight. Mechanical properties (tensile and bending) of the fabricated composites were investigated. The tensile strength (TS) of the 5% and 50% fiber reinforced composites was 32 MPa and 72 MPa, respectively. Similarly, tensile modulus, bending strength and bending modulus of the composites were increased by the increase of fiber loading. Interfacial properties of the composites were investigated by scanning electron microscopy (SEM) and the results revealed that the interfacial bond between fiber and matrix was excellent. Keywords: Unsaturated Polyester Resin, Mechanical Properties, E-glass Fibers, Composites, Polymer.


2012 ◽  
Vol 182-183 ◽  
pp. 33-36 ◽  
Author(s):  
Hong Yan Zhang ◽  
Xi Shi Tai ◽  
Hai Quan Wang

As a conductive fillers, graphite nanosheets can be induced by the AC electric field in unsaturated polyester resin and then prepared oriented unsaturated polyester resin/graphite nanosheets composite. We investigate the preparation, configuration and capability of the unsaturated resin/ graphite nanosheets conductive composites and the oriented theory of the graphite nanosheets induced in the electric field. The measures and observation of scanning electron microscopy(SEM), X-ray diffraction(XRD), electric current have shown that the graphite nanosheets are oriented by electric field which were randomly dispersed in the polymer matrix at the beginning, and then oriented with their flakes along the electric field in the polyester resin.


2020 ◽  
Vol 57 (3) ◽  
pp. 52-60
Author(s):  
Mohamed Farsane ◽  
Abdellah Anouar ◽  
Souad Chah ◽  
Miloud Bouzziri

In this study, the composites of ceramic waste filler polyester were produced with ceramic waste as the filler and unsaturated polyester resin as the matrix. Various weight of filler loads (particle size [180 �m) were used; 0, 28.5, 41 and 50 wt% in view to better understand the effect of filler content on the mechanical, thermal properties and water absorption of the composites. Additionally, Fourier transform infrared spectroscopy was used to characterize the samples, from the findings, it is noticed an increase in the level of porcelain powder decreased the flexural strength and Hardness and increased the density. The results of water absorption have shown the composites absorbs fewer water. Thermal degradation indicates that the composite is more resistant to temperature than unsaturated polyester matrix due to the effect of porcelain powder incorporated. Moreover, the results reveal an opportunity for using the ceramic waste as filler in unsaturated polyester resin formulation.


2021 ◽  
Vol 32 ◽  
pp. 73-84
Author(s):  
Md. Farhad Ali ◽  
Md. Sahadat Hossain ◽  
Tanvir Siddike Moin ◽  
Samina Ahmed ◽  
A.M. Sarwaruddin Chowdhury

The influence of chemical treatment on the mechanical properties of treated chicken feather fibre-reinforced unsaturated polyester resin (TCFF-UPR) composites was studied in this research. Redundant portions of chicken from poultry farms are comprehensively contaminating the environment. To minimize environmental pollution, these redundant portions need to use for the production of other materials. In this study, we used chicken feather for the preparation of useful composites combining with unsaturated polyester resin (UPR) to reduce environmental pollution. The composites were prepared successfully by conventional hand lay up technique using modified chicken feather as the reinforcing phase of composites. For preparing composites different percentages (2, 5, 7, 10, 12 and 15% by weight) of fibre were used. Attained tensile test results expressed significant enhancement in the tensile properties of composites, with the optimum combination of tensile strength presented by 5 wt% , tensile modulus presented by 10 wt% untreated chicken feather bio-fibre reinforcement and bending strength by 5 wt% chicken feather bio-fibre reinforcement.


2020 ◽  
Vol 32 (7) ◽  
pp. 1763-1767
Author(s):  
A. Chowdhury ◽  
S.K. Singh ◽  
P. Anthony

In the present study, unsaturated polyester resins based on castor oil was synthesized. Structure elucidation of the synthesized unsaturated polyester resin was done by FTIR and 1H NMR spectroscopy. Thermogravimetric analysis was used to evaluate the thermal stability of cured unsaturated polyester resin. Thermogram plot was further utilized to calculate various other parameters such as statistic heat-resistant index (Ts) and the integral procedural decomposition temperature (IPDT). Comparable properties with respect to commercial resins were reported for the synthesized polymers


Sign in / Sign up

Export Citation Format

Share Document