Formation of Lanthanum Hydroxide and Oxide via Precipitation

2008 ◽  
Vol 135 ◽  
pp. 23-26 ◽  
Author(s):  
So Jin Kim ◽  
Won Kyu Han ◽  
Sung Goon Kang ◽  
Min Su Han ◽  
Young Hun Cheong

Lanthanum hydroxide and oxide were prepared by the precipitation method in an aqueous medium at room temperature. The precipitate was examined using thermal analysis, X-ray diffraction and Scanning Electron Microscopy to investigate the phase evaluation and the thermal transformation by decomposition. The as-precipitated powder from the precipitation method was hexagonal La(OH)3. The lanthanum hydroxide was decomposed to oxide in two-steps as La(OH)3 → LaOOH + H2O and 2LaOOH → La2O3 + H2O.

2016 ◽  
Vol 5 (1) ◽  
pp. 6
Author(s):  
Budi Setiawan ◽  
Erizal Zaini ◽  
Salman Umar

Sebuah penelitian tentang sistem dispersi padat dari asiklovir dengan poloxamer 188 telah dilakukan formulasi dengan pencampuran secara fisika dengan rasio 1 : 1, 1 : 3, 1 : 5 dan dispersi padat 1 : 1, 1 : 3, 1 : 5 dan penggilingan 1:1 sebagai pembanding. Dispersi padat dibuat menggunakan metode pencairan (fusi), yang digabung dengan poloxamer 188 pada hotplate kemudian asiklovir dimasukkan ke dalam hasil poloxamer 188 lalu di kocok hingga membentuk masa homogen. Semua formula yang terbentuk termasuk asiklovir poloxamer 188 murni dianalisis karakterisasinya dengan Differential Thermal Analysis (DTA), X-ray Diffraction, Scanning Electron Microscopy (SEM), dan Fourier Transform Infrared (FTIR), kemudian pengambilan dilakukan  (penentuan kadar) mengunakan spektrofotometer UV pada panjang gelombang 257,08 nm dan uji laju disolusi dengan aquadest bebas CO2 menggunakan metode dayung. Hasil pengambilan  (penentuan kadar) menunjukkan bahwa semua formula memenuhi persyaratan farmakope Amerika edisi 30 dan farmakope Indonesia edisi 4 yaitu 95-110%. Sedangkan hasil uji laju disolusi untuk campuran fisik 1: 1, dan dispersi padat 1: 1, dan penggilingan 1: 1 menunjukkan peningkatan yang nyata dibandingkan asiklovir murni. Hal ini juga dapat dilihat dari hasil perhitungan statistik  menggunakan analisis varian satu arah  SPSS 17.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2013 ◽  
Vol 634-638 ◽  
pp. 2358-2361
Author(s):  
Jun Cong Wei ◽  
Li Rong Yang

The effects of Si3N4 addition on the room temperature physical properties and thermal shock resistance properties of corundum based refractory castables were investigated using brown corundum, white corundum and alumina micropowder as the starting materials and pure calcium aluminate as a binder. The phase composition, microstructure, mechanical properties of corundum based castables were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that as the increase in Si3N4 addition, the bulk density decreased and apparent porosity increased, the cold strength deduced. However, the residual strength rate increased. That is, the thermal shock resistance was improved. This is because even though the introduction of Si3N4 inhibited the sintering of material and deduced the compactness, microcracks were produced in the materials due to a difference in thermal expansion coefficient. So the thermal shock resistance of corundum based castable was improved.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Jiaxiang Chen ◽  
Xiaopeng Jia ◽  
Yuewen Zhang ◽  
Haiqiang Liu ◽  
Baomin Liu ◽  
...  

The polycrystalline skutterudite [Formula: see text] were successfully synthesized from 1.5 GPa to 3.5 GPa by the high pressure and high temperature (HPHT) method. Negative Seebeck coefficient confirmed the n-type conductivity of all samples. The phase compositions of samples were investigated by X-ray diffraction (XRD) and the microstructures were observed by scanning electron microscopy (SEM). It was found that the grains appeared smaller and the grain boundaries became more abundant when pressures were higher. We measured the electrical properties from room temperature to 723 K. Both the electrical resistivity and absolute value of Seebeck coefficient increase with the increasing synthetic pressure. At 723 K, the maximum power factor of [Formula: see text] was obtained for the sample synthesized under 3 GPa. The maximum ZT value of 0.61 was reached by [Formula: see text] synthesized under 3 GPa and measured at 723 K.


2021 ◽  
Author(s):  
Fatma Unal

Abstract Terbium oxide (Tb2O3) particles (NPs) were synthesized by precipitation method using ammonium carbonate as precipitation agent. Effects of precursor molarity (0.1, 0.15 and 0.2 M) on photoluminescence (PL) behaviour of the NPs were investigated. The presence of the Tb2O3 phase was confirmed by X-Ray Diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) analyses. Morphological investigations of the produced powders were made by Field Emission Gun-Scanning Electron Microscopy (FEG-SEM). It showed that the morphology of Tb2O3 particles transformed from the nanograin chain to bundles morphology of rod-like as the amount of precursor molarity increased. Emission spectrum were investigated by Photoluminescence (PL) Spectroscopy. All the Tb2O3 particles exhibited the strongest peak at 493 nm ascribed to 5D4-7F6 (magnetic dipole (MD), C2) transition. The increase in the number of C2 sites released from the MD transition with the increase of the precursor molarity caused a negative increase in the b* (yellowness/blueness of the emission) value in the CIE diagram, indicating that the colour shifted to the blue region. The Tb2O3 particles produced by the precipitation method exhibited novel strong cyan colour and the PL emission intensity increased with increasing molarity.


2021 ◽  
Vol 234 ◽  
pp. 00106
Author(s):  
Houda Labjar ◽  
Hassan Chaair

The synthesis of apatite silicated Ca10(PO4)6-x(SiO4)x(OH)2-x (SiHA) with 0≤x≤2 was investigated using a wet precipitation method followed by heat treatment using calcium carbonate CaCO3 and phosphoric acid H3PO4 and silicon tetraacetate SiC8H20O4 (TEOS) in medium of water ethanol, with three different silicate concentrations. After drying, the samples are ground and then characterized by different analytical techniques like X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning electron Microscopy (SEM) and chemical analysis.


2017 ◽  
Vol 2017 ◽  
pp. 1-4 ◽  
Author(s):  
Swati Arora ◽  
Vivek Jaimini ◽  
Subodh Srivastava ◽  
Y. K. Vijay

Bismuth telluride has high thermoelectric performance at room temperature; in present work, various nanostructure thin films of bismuth telluride were fabricated on silicon substrates at room temperature using thermal evaporation method. Tellurium (Te) and bismuth (Bi) were deposited on silicon substrate in different ratio of thickness. These films were annealed at 50°C and 100°C. After heat treatment, the thin films attained the semiconductor nature. Samples were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM) to show granular growth.


NANO ◽  
2016 ◽  
Vol 11 (07) ◽  
pp. 1650079 ◽  
Author(s):  
Wenjun Yan ◽  
Ming Hu ◽  
Jiran Liang ◽  
Dengfeng Wang ◽  
Yulong Wei ◽  
...  

A novel composite of Au-functionalized porous silicon (PS)/V2O5 nanorods (PS/V2O5:Au) was prepared to detect NO2 gas. PS/V2O5 nanorods were synthesized by a heating process of pure vanadium film on PS, and then the obtained PS/V2O5 nanorods were functionalized with dispersed Au nanoparticles. Various analytical techniques, such as field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), have been employed to investigate the properties of PS/V2O5:Au. Herein, the PS/V2O5:Au sample exhibited improved NO2-sensing performances in response, stability and selectivity at room temperature (25[Formula: see text]C), compared with the pure PS/V2O5 nanorods. These phenomena were closely related to not only the dispersed Au nanoparticles acting as a catalyst but also the p-n heterojunctions between PS and V2O5 nanorods. Whereas, more Au nanoparticles suppressed the improvement of response to NO2 gas.


Sign in / Sign up

Export Citation Format

Share Document