Weldability of the MSRB Magnesium Alloy

2011 ◽  
Vol 176 ◽  
pp. 107-118 ◽  
Author(s):  
Janusz Adamiec

This work, in combination with industrial tests of casting welding, shows that the causes of high-temperature brittleness are the partial tears of the structure and the hot cracks of both the castings, as well as the welded and padded joints. Such phenomena should be treated as irreversible failures caused by the process of crystallization that is in the area of co-existence of the solid and liquid structural constituent. Nil-strength temperature (NST), nil-ductility temperature (NDT) and ductility recovery temperature (DRT) were determined using Gleeble 3800. Obtained results enabled the defining of brittle temperature range of MSR-B magnesium alloy. The assessment of the resistance to hot fractures was conducted on the basis of the transvarestriant trial. The transvarestriant trial involves changing of strain during welding. It was stated that the range of the high-temperature brittleness is very broad, which significantly limits the application of the welding techniques to join or repair elements made of the MSRB alloy. brittleness is caused mainly by metallurgical factors, i.e. precipitation of intermetallic phases from the solid solution.

2012 ◽  
Vol 322 ◽  
pp. 33-39 ◽  
Author(s):  
Sergei Zhevnenko ◽  
Eugene Gershman

High-temperature creep experiments were performed on a Cu-2.8 ат.% Co solid solution. Cylindrical foils of 18 micrometers thickness were used for this purpose. Creep tests were performed in a hydrogen atmosphere in the temperature range of about from 1233 K to 1343 K and at stresses lower than 0.25 MPa. For comparison, a foil of pure copper and Cu-20 at.% Ni solid solution were investigated on high temperature creep. Measurements on the Cu foil showed classical diffusional creep behavior. The activation energy of creep was defined and turned out to be equal 203 kJ/mol, which is close to the activation energy of bulk self-diffusion of copper. There was a significant increase in activation energy for the Cu-20 at.% Ni solid solution. Its activation energy was about 273 kJ/mol. The creep behavior of Cu-Co solid solution was more complicated. There were two stages of diffusional creep at different temperatures. The extremely large activation energy (about 480 kJ/mol) was determined at relatively low temperature and a small activation energy (about 105 kJ/mol) was found at high temperatures. The creep rate of Cu-Co solid solution was lower than that of pure copper at all temperatures. In addition, the free surface tension of Cu-2.8 ат.% Co was measured at different temperatures from 1242 K to 1352 K. The surface tension increases in this temperature range from 1.6 N/m to 1.75 N/m. There were no features on the temperature dependence of the surface tension.


2013 ◽  
Vol 203-204 ◽  
pp. 246-249 ◽  
Author(s):  
Tomasz Rzychoń

The paper presents results of microstructural investigations of Mg-5Al-3Ca-0.7Sr-0.2Mn (ACJM53) magnesium alloys in the as-cast condition and after heat treatment at 450°C for 4.5 hours. Two kinds of transformation were observed in ACJM53 alloy after heat treatment: (Mg,Al)2Ca (C36) → Al2Ca (C15) and Al3Mg13(Sr,Ca) → Mg17(Sr,Ca)2 transformations without the change in morphology of output compounds. Morphology of Mg2Ca (C14) have been changed from fine lamellar to globular and precipitation process of Al2Ca (C15) phase inside the grains of solid solution was found.


2014 ◽  
Vol 1077 ◽  
pp. 82-88
Author(s):  
Miroslav Jáňa ◽  
Milan Turňa ◽  
Milan Marônek ◽  
Marcel Kuruc ◽  
Pavel Bílek

Contribution deals with soldering of Mg alloy AZ31B by ternary solder ZnAl6Ag6 with ultrasonic support. Suggested solder has been analyzed from many aspects. Microstructure of solder consistutes of solid solution α-Al (FCC_Al), β-Zn (HCP_Zn) and intermetallic phases AgZn3 and AlAg3. Melting temperature of solder 386.8 °C has been determined by DSC analysis. Metallurgical process of ultrasonic soldering has run at 410 °C for 3 s. Soldered joint has been constituted by eutectic ternary structure β-Mg17(ZnAl)12, solid solution α - Mg, which contains Al and Ag elements. At solder-substrate interface, there has been formed intermetallic phase Mg2Zn11. The highest value of microhardness has been 260 HV. To predict lifetime of soldered joint, calculations in software Thermo-Calc has been performed.


2007 ◽  
Vol 5 (2) ◽  
pp. 508-515
Author(s):  
Ivan Nerád ◽  
Eva Mikšíková

AbstractRelative enthalpies for low-and high-temperature modifications of Na3FeF6 and for the Na3FeF6 melt have been measured by drop calorimetry in the temperature range 723–1318 K. Enthalpy of modification transition at 920 K, δtransH(Na3FeF6, 920 K) = (19 ± 3) kJ mol−1 and enthalpy of fusion at the temperature of fusion 1255 K, δfusH(Na3FeF6, 1255 K) = (89 ± 3) kJ mol−1 have been determined from the experimental data. Following heat capacities were obtained for the crystalline phases and for the melt, respectively: C p(Na3FeF6, cr, α) = (294 ± 14) J (mol K)−1, for 723 = T/K ≤ 920, C p(Na3FeF6, cr, β) = (300 ± 11) J (mol K)−1 for 920 ≤ T/K = 1233 and C p(Na3FeF6, melt) = (275 ± 22) J (mol K)−1 for 1258 ≤ T/K ≤ 1318. The obtained enthalpies indicate that melting of Na3FeF6 proceeds through a continuous series of temperature dependent equilibrium states, likely associated with the production of a solid solution.


Author(s):  
M. Larsen ◽  
R.G. Rowe ◽  
D.W. Skelly

Microlaminate composites consisting of alternating layers of a high temperature intermetallic compound for elevated temperature strength and a ductile refractory metal for toughening may have uses in aircraft engine turbines. Microstructural stability at elevated temperatures is a crucial requirement for these composites. A microlaminate composite consisting of alternating layers of Cr2Nb and Nb(Cr) was produced by vapor phase deposition. The stability of the layers at elevated temperatures was investigated by cross-sectional TEM.The as-deposited composite consists of layers of a Nb(Cr) solid solution with a composition in atomic percent of 91% Nb and 9% Cr. It has a bcc structure with highly elongated grains. Alternating with this Nb(Cr) layer is the Cr2Nb layer. However, this layer has deposited as a fine grain Cr(Nb) solid solution with a metastable bcc structure and a lattice parameter about half way between that of pure Nb and pure Cr. The atomic composition of this layer is 60% Cr and 40% Nb. The interface between the layers in the as-deposited condition appears very flat (figure 1). After a two hour, 1200 °C heat treatment, the metastable Cr(Nb) layer transforms to the Cr2Nb phase with the C15 cubic structure. Grain coarsening occurs in the Nb(Cr) layer and the interface between the layers roughen. The roughening of the interface is a prelude to an instability of the interface at higher heat treatment temperatures with perturbations of the Cr2Nb grains penetrating into the Nb(Cr) layer.


Author(s):  
N. Rozhanski ◽  
A. Barg

Amorphous Ni-Nb alloys are of potential interest as diffusion barriers for high temperature metallization for VLSI. In the present work amorphous Ni-Nb films were sputter deposited on Si(100) and their interaction with a substrate was studied in the temperature range (200-700)°C. The crystallization of films was observed on the plan-view specimens heated in-situ in Philips-400ST microscope. Cross-sectional objects were prepared to study the structure of interfaces.The crystallization temperature of Ni5 0 Ni5 0 and Ni8 0 Nb2 0 films was found to be equal to 675°C and 525°C correspondingly. The crystallization of Ni5 0 Ni5 0 films is followed by the formation of Ni6Nb7 and Ni3Nb nucleus. Ni8 0Nb2 0 films crystallise with the formation of Ni and Ni3Nb crystals. No interaction of both films with Si substrate was observed on plan-view specimens up to 700°C, that is due to the barrier action of the native SiO2 layer.


Alloy Digest ◽  
1993 ◽  
Vol 42 (10) ◽  

Abstract ALTEMP HX is an austenitic nickel-base alloy designed for outstanding oxidation and strength at high temperatures. The alloy is solid-solution strengthened. Applications include uses in the aerospace, heat treatment and petrochemical markets. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-442. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1992 ◽  
Vol 41 (5) ◽  

Abstract INCO ALLOY 330 is a nickel/iron/chromium austenitic alloy, not hardenable by heat treatment. It is a solid solution strengthened high-temperature alloy. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-403. Producer or source: Inco Alloys International Inc..


Alloy Digest ◽  
1974 ◽  
Vol 23 (4) ◽  

Abstract ALUMINUM 3004 is nominally an aluminum-manganese-magnesium alloy which cannot be hardened by heat treatment; however, it can be strain hardened by cold working. It has higher strength than Aluminum 3003 and good workability, weldability and resistance to corrosion. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-51. Producer or source: Various aluminum companies. Originally published June 1957, revised April 1974.


Alloy Digest ◽  
1990 ◽  
Vol 39 (1) ◽  

Abstract ALCOA ALUMINUM ALLOY 7050 is an aluminum-zinc-copper-magnesium alloy with a superior combination of strength, stress-corrosion cracking resistance and toughness, particularly in thick sections. In thin sections it also possesses an excellent combination of properties that are important for aerospace applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Al-233. Producer or source: Aluminum Company of America. Originally published as Aluminum 7050, January 1979, revised January 1990.


Sign in / Sign up

Export Citation Format

Share Document