Control-Oriented Modelling of Spatial Motion of Autonomous Underwater Vehicle

2013 ◽  
Vol 196 ◽  
pp. 109-116
Author(s):  
Jerzy Garus

Modelling of three-dimensional motion of an underwater vehicle along a time-varying reference trajectory with predefined speed profiles is presented in the paper. A nonlinear mathematical model with unknown nonlinearities describes the vehicle’s dynamics. Command signals are generated by an adaptive autopilot consisting of three independent controllers with a parameter adaptation law implemented. A control performance is guaranteed by suitably choosing design parameters. Selected results of computer simulations are inserted to demonstrate quality and effectiveness of the approach.

A dynamic model of the underwater vehicle is usually established with parameters uncertainties due to the non-linear and time-varying nature of hydrodynamic forces from the surrounding fluid and external environmental disturbances. The paper investigates the motion control problem of the vehicle in tridimensional space based on model reference adaptive control. A developed autopilot consists of three independent controllers with a parameter adaptation law implemented. A control performance is guaranteed by suitably choosing design parameters. The effectiveness and robustness of the proposed control scheme for trajectory tracking in surge, depth and yaw dynamics is tested through simulations studies.


Author(s):  
Bo Su ◽  
Hongbin Wang ◽  
Ning Li

In this paper, an event-triggered integral sliding mode fixed-time control method for trajectory tracking problem of autonomous underwater vehicle (AUV) with disturbance is investigated. Initially, the global fixed time stability is ensured with conventional periodic sampling method for reference trajectory tracking. By introducing fixed time integral sliding mode manifold, fixed time control strategy is expressed for the AUV, which can effectively eliminate the singularity. Correspondingly, in order to reduce the damage caused by chattering phenomenon, an adaptive fixed-time method is proposed based on the designed continuous integral terminal sliding mode (ITSM) to ensure that the trajectory tracking for AUV is achieved in fixed-time with external disturbance. In order to reduce resource consumption in the process of transmission network, the event-triggered sliding mode control strategy is designed which condition is triggered by an event. Also, Zeno behavior is avoided by proof of theoretical. It is shown that the upper bounds of settling time are only dependent on the parameters of controller. Theoretical analysis and simulation experiment results show that the presented methods can realize the control object.


Author(s):  
Mohammad Saghafi ◽  
Roham Lavimi

In this research, the flow around the autonomous underwater vehicles with symmetrical bodies is numerically investigated. Increasing the drag force in autonomous underwater vehicles increases the energy consumption and decreases the duration of underwater exploration and operations. Therefore, the main objective of this research is to decrease drag force with the change in geometry to reduce energy consumption. In this study, the decreasing or increasing trends of the drag force of axisymmetric bare hulls have been studied by making alterations in the curve equations and creating the optimal geometric shapes in terms of hydrodynamics for the noses and tails of autonomous underwater vehicles. The incompressible, three-dimensional, and steady Navier–Stokes equations have been used to simulate the flow. Also, k-ε Realizable with enhanced wall treatment was used for turbulence modeling. Validation results were acceptable with respect to the 3.6% and 1.4% difference with numerical and experimental results. The results showed that all the autonomous underwater vehicle hulls designed in this study, at an attack angle of 0°, had a lower drag force than the autonomous underwater vehicle hull used for validation except geometry no. 1. In addition, nose no. 3 has been selected as the best nose according to the lowest value of stagnation pressure, and also tail no. 3 has been chosen as the best tail due to the production of the lowest vortex. Therefore, geometry no. 5 has been designed using nose and tail no. 3. The comparison made here showed that the maximum drag reduction in geometry no. 5 was equal to 26%, and therefore, it has been selected as the best bare hull in terms of hydrodynamics.


2014 ◽  
Vol 568-570 ◽  
pp. 917-921
Author(s):  
Hong Bin Zhang ◽  
Jian Yuan

The modelling method of a full-actuated autonomous underwater vehicle is investigated.The kinematics and dynamics models of the full-actuated autonomous underwater vehicle in three-dimensional space are constructed. Gravity and moment of gravity,current resistance and moment of resistance, buoyancy and moment of buoyancy and thrust and moment of thrust are constructed, respectively. Experiment results show the effectiveness of the proposed modelling method.


2012 ◽  
Vol 9 (2) ◽  
pp. 135-152 ◽  
Author(s):  
Sreekar Gomatam ◽  
S Vengadesan ◽  
S K Bhattacharyya

Three dimensional (3D) flow past an Autonomous Underwater Vehicle (AUV) is simulated using a Computational Fluid Dynamics (CFD) approach at a Reynolds (Re) number of 2.09x106. A non-linear k-? (NLKE) turbulence model is used for solving the Reynolds Averaged Navier-Stokes (RANS) equations. The effect of control surfaces over the flow, the flow interaction between the hull and the appendages at various Angles of Attack (AoA) and the effect of the symmetry plane is studied. Flow structure, variation of flow variables and force distribution for various AoA are presented and discussed in detail.DOI: http://dx.doi.org/10.3329/jname.v9i2.12567 Journal of Naval Architecture and Marine Engineering 9(2012) 135-152


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142092523
Author(s):  
Lei Cai ◽  
Qiankun Sun

The time-varying ocean currents and the delay of underwater acoustic communication have caused the uncertainty of single autonomous underwater vehicle (AUV) tracking target and the inconsistency of multi-AUV coordination, which make it difficult for multiple AUVs to form a hunting alliance. To solve the above problems, this article proposes the multi-AUV consistent collaborative hunting method based on generative adversarial network (GAN). Firstly, the three-dimensional (3D) kinematic model of AUV is established for the underwater 3D environment. Secondly, combined with the Laplacian matrix, the topology of the hunting alliance in the ideal environment is established, and the control rate of AUV is calculated. Finally, using the GAN network model, the control relationship after environmental interference is used as the input of the generative model. The control rate in the ideal environment is used as the comparison object of the discriminative model. Using the iterative training of GAN to generate a control rate that adapts to the current interference environment and combining multi-AUV topological hunting model to achieve successful hunting of noncooperative target, the experimental results show that the algorithm reduces the average hunting time to 62.53 s and the success rate of hunting is increased to 84.69%, which is 1.17% higher than the particle swarm optimization-constant modulus algorithm (PSO-CMA) algorithm.


2000 ◽  
Vol 12 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Yutaka Nagashima ◽  
◽  
Takakazu Ishimatsu ◽  
Jamal Tariq Mian ◽  

We developed an autonomous underwater vehicle (AUV) with a distributed controller and underwater acoustic communication. It is compact and lightweight thanks to its variable vector propeller and control using sophisticated logic circuits. Control is very precise using underwater ultrasonic command signals. Experiments showed that the AUV moves along a path at the desired position and azimuth. We confirmed the feasibility of our algorithm for increasing ultrasonic communication reliability.


Sign in / Sign up

Export Citation Format

Share Document