Experimental Tests of an Electromechanical Transducer of Reverse Linear Motion into Electrical Energy

2013 ◽  
Vol 208 ◽  
pp. 86-92 ◽  
Author(s):  
Marcin Węgrzynowski ◽  
Mateusz Romaszko

This document deals with the results of laboratory tests of an experimental electromechanical transducer for supplying an magnetorheological (MR) damper. The aim of the tests was to determine: the electromotive force induced in the sectionalized coil, the voltage and the current strength in the control coil of the damper as well as instantaneous power. The results provided are based on the tests of the transducer under periodic kinematic excitations and are compared with those achieved in numerical calculations.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Guoliang Hu ◽  
Yun Lu ◽  
Shuaishuai Sun ◽  
Weihua Li

A magnetorheological (MR) damper with energy harvesting ability was proposed based on electromagnetic induction (EMI) principle. The energy harvesting part was composed of a permanent magnet array and inducing coils which move vertically. This device could act as a linear power generator when the external excitation was applied, and the kinetic energy could be converted into electrical energy due to the relative linear motion between the magnets array and the inducing coils. Finite element models of both the MR damper part and the linear power generator part were built up separately to address the magnetic flux distributions, the magnetic flux densities, and the power generating efficiency using ANSYS software. The experimental tests were carried out to evaluate the damping performance and power generating efficiency. The results show that the proposed MR damper can produce approximately 750 N damping forces at the current of 0.6 A, and the energy harvesting device can generate about 1.0 V DC voltage at 0.06 m·s−1excitation.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 848
Author(s):  
Bogdan Sapiński ◽  
Paweł Orkisz ◽  
Łukasz Jastrzębski

The aim of the work is to investigate power flows in the vibration reduction system equipped with a magnetorheological (MR) damper and energy regeneration. For this purpose, experiments were conducted in the test rig compound of the shaker and the vibration reduction system (electromagnetic harvester, MR damper, spring) which are attached to the sprung mass. The experimental data acquired under sine excitations enabled us to analyze instantaneous power fluxes, as well as a rate of inertial energy changes in the system.


Author(s):  
Francesco Braghin ◽  
Federico Cheli ◽  
Edoardo Sabbioni

Individual tire model parameters are traditionally derived from expensive component indoor laboratory tests as a result of an identification procedure minimizing the error with respect to force and slip measurements. These parameters are then transferred to vehicle models used at a design stage to simulate the vehicle handling behavior. A methodology aimed at identifying the Magic Formula-Tyre (MF-Tyre) model coefficients of each individual tire for pure cornering conditions based only on the measurements carried out on board vehicle (vehicle sideslip angle, yaw rate, lateral acceleration, speed and steer angle) during standard handling maneuvers (step-steers) is instead presented in this paper. The resulting tire model thus includes vertical load dependency and implicitly compensates for suspension geometry and compliance (i.e., scaling factors are included into the identified MF coefficients). The global number of tests (indoor and outdoor) needed for characterizing a tire for handling simulation purposes can thus be reduced. The proposed methodology is made in three subsequent steps. During the first phase, the average MF coefficients of the tires of an axle and the relaxation lengths are identified through an extended Kalman filter. Then the vertical loads and the slip angles at each tire are estimated. The results of these two steps are used as inputs to the last phase, where, the MF-Tyre model coefficients for each individual tire are identified through a constrained minimization approach. Results of the identification procedure have been compared with experimental data collected on a sport vehicle equipped with different tires for the front and the rear axles and instrumented with dynamometric hubs for tire contact forces measurement. Thus, a direct matching between the measured and the estimated contact forces could be performed, showing a successful tire model identification. As a further verification of the obtained results, the identified tire model has also been compared with laboratory tests on the same tire. A good agreement has been observed for the rear tire where suspension compliance is negligible, while front tire data are comparable only after including a suspension compliance compensation term into the identification procedure.


Author(s):  
G.JITHENDRA NAIDU ◽  
K.PRANAY KUMAR REDDY ◽  
S.SIVA PRASAD

Due to advancement in the field of technology in recent years, wireless data transmission techniques are commonly used in electronic devices. For powering them we rely upon power supply through wires charging, else power may be supplied from batteries. But while travelling for longer distances continuously we may not be able to obtain power supply for these devices to operate or to recharge their batteries. So in order to operate them continuously we need a power source that provides continuous energy to operate these devices. The mechanical vibrations which are produced by the automobiles can be utilized as a source of energy for generating electrical energy that can be utilized by these electronic equipment to operate. These vibrations are produced by different vehicles around us which is going as a waste. This technique utilizes piezoelectric components where deformations produced by vibrations are directly converted to electrical charge via piezoelectric effect and principle of electromagnetic induction between coil and magnetic field which produces Electromotive force in the coil provided displacement to magnet by the vibrations. The piezoelectric materials and permanent magnets are used as energy conversion devices for converting mechanical vibrations to electrical energy. In this context, we introduced two methods and considered its output performance provided input vibrations, by using piezoelectric materials such as PZT for electro mechanical conversion using Mass-spring system as medium of conversion of force from vibrations applied on PZT materials and by using spring-magnet system where relative displacement of magnet with respect to coil, provided input vibrations generates Electromotive force in coil.


2018 ◽  
Vol 84 (2) ◽  
pp. 21101
Author(s):  
Joanes Berasategui ◽  
Ainara Gomez ◽  
Manex Martinez-Agirre ◽  
Maria Jesus Elejabarrieta ◽  
M. Mounir Bou-Ali

The objective of this article is to determine the optimal flow mode in an MR damper to maximize its performance. Flow mode is one of the main design issues in an MR damper, as it determines the velocity profile and the pressure drop across the gap. In this research, two MR dampers were designed and manufactured with two flow modes: valve and mixed. The response of these two dampers was compared experimentally. Additionally, the experimental tests were correlated by theoretical results that were obtained considering the rheological behaviour of the MR fluid, the shear stress distribution in the gap, and the damper movement. Interestingly, the obtained results suggest that flow mode is not a significant parameter for determining the behaviour of a MR damper.


1998 ◽  
Vol 7 (6) ◽  
pp. 096369359800700 ◽  
Author(s):  
E. Gutiérrez ◽  
G. Di Salvo ◽  
J.M. Mieres ◽  
L. Mogensen ◽  
E. Shahidi ◽  
...  

In this paper we outline the development of an all-in-one composite reinforcing formwork system for manufacturing reinforced concrete elements, in particular, we describe the main experimental tests carried out on an 8 metre beam using high strength concrete poured and bonded on a hybrid, glass/carbon fibre formwork.


2016 ◽  
Vol 62 (3) ◽  
pp. 207-224 ◽  
Author(s):  
M. Superczyńska ◽  
K. Józefiak ◽  
A. Zbiciak

Abstract The paper presents results of numerical calculations of a diaphragm wall model executed in Poznań clay formation. Two selected FEM codes were applied, Plaxis and Abaqus. Geological description of Poznań clay formation in Poland as well as geotechnical conditions on construction site in Warsaw city area were presented. The constitutive models of clay implemented both in Plaxis and Abaqus were discussed. The parameters of the Poznań clay constitutive models were assumed based on authors’ experimental tests. The results of numerical analysis were compared taking into account the measured values of horizontal displacements.


2014 ◽  
Vol 630 ◽  
pp. 99-108
Author(s):  
Andrzej Korczak ◽  
Grzegorz Peczkis ◽  
Tomasz Synowiec ◽  
Ievgenii Altyntsev

This paper presents new construction of a submersible pump which is highly efficient due to the new solutions for flow channels. It includes the results of laboratory tests of the pump of the new construction. It also presents the results of numerical calculations of liquid’s movement in the flow channels of the pump, comparison of computing characteristics and characteristics measured in the laboratory.and an analysis of the essential parameters of the pump’s work which transgression could become a danger for the pump. In case of the danger the security system turns off the engine temporally or permanently.


ROTOR ◽  
2018 ◽  
Vol 11 (2) ◽  
pp. 47
Author(s):  
Hattu P D Edwin ◽  
Wabang A Jhon ◽  
Tuati Ambros ◽  
Palinggi Aris

Electrical energy is a very important requirement for the community, along with the development of the era and technological advances that are urgently needed, the need for electrical energy is very large, while the source of electricity that is currently being used still uses energy derived from fossil fuels. As we know that the source of energy derived from fossils is very limited, therefore other energy sources are sought or we are more familiar with renewable energy, one of which is the energy source that comes from the sun, which is better known as solar cell. The electricity from this solar cell is very dependent on sunlight which must illuminate the solar panels so that solar energy can be converted into electrical energy. The output from these solar panels is in the form of voltage and electric current. Some factors that can affect the amount of output or output voltage of electric current in PLTS is, temperature, shadow, (cloud condition, and surrounding environment), and wind speed. Therefore, the purpose of this research is to find out how much the shadow effect on the output voltage and electric current produced by PLTS. It is expected that this research can increase the knowledge of energy derived from the sun in this case the solar cell and know the effect of the shadow on the output voltage and electric current from solar panels.The results showed that there was a shadow effect on voltage reduction and current strength in the PLTS system, namely the 10% shadow area and 12.44 volt DC solar panel current and 2.54 amperage, 100% area covering the voltage output panel and the current of solar panels 12.10 volt DC and 0.22 amperage. The area of the shadow that covers the solar panel affects the output voltage and the strong current of the battery that is the area of the shadow 10% voltage and strong current battery 12.35 volt DC and 18.54 amper, 100% area cover the output panel voltage and strong current battery 11.90 volt DC and 13.85 amperes The shadow area covering the solar panels influences the output voltage and current strength of the inverter, namely the area of the shadow 10% voltage and 226.4 volt AC inverter current and 0.97 amperage, 100% covering the output voltage panel and 220.2 volt AC and 0.66 amperage current. Keywords: Electrical energy, Solar cell, Shadow (cloud condition)


2011 ◽  
Vol 82 ◽  
pp. 75-80 ◽  
Author(s):  
Gianluca Cusatis ◽  
Giovanni Di Luzio ◽  
Luigi Cedolin

The study of concrete dam subjected to extreme loading conditions require theadoption of accurate constitutive equations. In this paper some recent results on the meso-scalesimulation of blast and penetration e ects on concrete will be discussed. The adopted meso-scale constitutive equation is the so-called Lattice Discrete Particle Model (LDPM) recentlyformulated at Rensselaer Polytechnic Institute. LDPM can accurately describe the macroscopicbehavior of quasi-brittle materials, and especially concrete, during elastic, fracturing, softening,and hardening regimes. Tensile dominated experimental tests under both dynamic conditionswere numerically simulated. After presenting examples of simulations relevant to quasi-staticand dynamic concrete behavior, LDPM simulation of the e ect of air blast pressure, on concretewill be discussed. Finally, the problem of the extrapolations of laboratory tests to actual in-situconditions is also presented.


Sign in / Sign up

Export Citation Format

Share Document