Semisolid Processing of Magnesium Alloys: Microstructure - Property Relationship

2014 ◽  
Vol 217-218 ◽  
pp. 3-7 ◽  
Author(s):  
Frank Czerwiński

An application of semisolid processing to magnesium alloys is discussed emphasizing both the fundamental and applied research activities aimed at better understanding the microstructure-property relationship. The reduced temperature of semisolid processing, providing common benefits of longer tool life, tighter dimensional tolerances and better process consistency is of special importance for magnesium alloys due to their high affinity to oxygen, requiring an expensive protection and leading otherwise to ignition and burning. However, the reduced temperature resulting in higher part integrity does not create beneficial microstructural characteristics converting to substantially improved mechanical properties. Major microstructural factors controlling properties of magnesium alloys after semisolid processing are discussed.

2019 ◽  
Vol 285 ◽  
pp. 489-494 ◽  
Author(s):  
Frank Czerwinski

An application of semisolid processing to magnesium alloys is described, emphasizing both the fundamental aspects and up-to-date successful industrial applications. The key advantages of the semisolid route are discussed, including longer tool life, tighter dimensional tolerances and better process consistency. The particular attention is paid to reduced temperature of semisolid processing, providing common benefits for magnesium alloys due to their high affinity to oxygen, requiring an expensive protection and leading otherwise to ignition and burning. Major microstructural factors controlling properties of magnesium alloys after semisolid processing are considered. It is concluded that although the reduced temperature results in higher part integrity, it does not create beneficial microstructural characteristics converting to substantially improved mechanical properties.


2016 ◽  
Vol 850 ◽  
pp. 790-801
Author(s):  
Hong Xu ◽  
Xin Zhang ◽  
Chang Shun Wang ◽  
Jin Chuan Hu ◽  
Cheng Wang ◽  
...  

AZ91D magnesium alloy is one of the most widely used magnesium alloys in the production of metal forming, which use the characteristics from liquid state to solid state of metal to form. The present status of the research and application of the semi-solid forming for AZ91D magnesium alloys at present was reviewed in this paper, including the microstructural characteristics, the thixotropic and rheological behavior, the forming process of semi-solid for AZ91D magnesium alloys and the mechanical properties of the parts made of semi-solid magnesium alloys. The developing prospects and the key points of the semi-solid forming for AZ91D magnesium alloys were forecasted, and the industrial application of the alloy were also discussed.


2005 ◽  
Vol 488-489 ◽  
pp. 401-404
Author(s):  
Hwa Chul Jung ◽  
Kwang Seon Shin

Magnesium has the lowest density among the commercially available structural metals and its superior physical and mechanical properties make magnesium alloys extremely attractive for applications requiring lightweight, good castability and damping capacity. In recent years, due to the demand for lightweight magnesium components in the automobile and electronic industries, the world market for magnesium alloys has increased rapidly. At the same time, the research activities on manufacturing process and characterization of magnesium alloys have also increased significantly. The research activities have been concentrated on many different fields, including the development of high pressure die casting process and semi-solid processing, development of high strength wrought alloys and components, and characterization of microstructure, mechanical properties as well as corrosion properties. In this article, the recent progresses achieved in these research areas at Seoul National University will be introduced.


2021 ◽  
Vol 296 ◽  
pp. 129880
Author(s):  
Zahra Nasiri ◽  
Mahmoud Sarkari Khorrami ◽  
Hamed Mirzadeh ◽  
Massoud Emamy

Author(s):  
Wenxue Fan ◽  
Hai Hao

Abstract Grain refinement has a significant influence on the improvement of mechanical properties of magnesium alloys. In this study, a series of Al–Ti–C-xGd (x = 0, 1, 2, 3) master alloys as grain refiners were prepared by self-propagating high-temperature synthesis. The synthesis mechanism of the Al–Ti–C-xGd master alloy was analyzed. The effects of Al–Ti–C-xGd master alloys on the grain refinement and mechanical properties of AZ31 (Mg-3Al-1Zn-0.4Mn) magnesium alloys were investigated. The results show that the microstructure of the Al–Ti–C-xGd alloy contains α-Al, TiAl3, TiC and the core–shell structure TiAl3/Ti2Al20Gd. The refining effect of the prepared Al–Ti–C–Gd master alloy is obviously better than that of Al–Ti–C master alloy. The grain size of AZ31 magnesium alloy was reduced from 323 μm to 72 μm when adding 1 wt.% Al–Ti–C-2Gd master alloy. In the same condition, the ultimate tensile strength and elongation of as-cast alloy were increased from 130 MPa, 7.9% to 207 MPa, 16.6% respectively.


Author(s):  
John V. Kennedy ◽  
William Joseph Trompetter ◽  
Peter P. Murmu ◽  
Jerome Leveneur ◽  
Prasanth Gupta ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 152
Author(s):  
Xinlin Wang ◽  
Lei Lei ◽  
Han Yu

The service life of rails would be remarkably reduced owing to the increase of axle load, which can induce the occurrence of damages such as cracks, collapse, fat edges, etc. Laser cladding, which can enhance the mechanical properties of the rail by creating a coating, has received great attention in the area of the rails due to the attractive advantages such as low input heat, small heat-affected zone, and small deformation. In this paper, recent developments in the microstructural characteristics and mechanical properties of a cladded layer on the rail are reviewed. The method of process optimization for enhancing the properties of a cladded layer are discussed. Finally, the trend of future development is forecasted.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Huijie Liu ◽  
Yunqiang Zhao ◽  
Xingye Su ◽  
Lilong Yu ◽  
Juncai Hou

2A12-T4 aluminum alloy was friction stir spot welded, and the microstructural characteristics and mechanical properties of the joints were investigated. A softened microstructural region existed in the joint, and it consisted of stir zone (SZ), thermal mechanically affected zone (TMAZ), and heat affected zone (HAZ). The minimum hardness was located in TMAZ, and the average hardness value in SZ can be improved by appropriately increasing welding heat input. The area of complete bonding region at the interface increased with increasing welding heat input because more interface metals were mixed. In a certain range of FSSW parameters, the tensile shear failure load of the joint increased with increasing rotation speed, but it decreased with increasing plunge rate or decreasing shoulder plunging depth. Two kinds of failure modes, that is, shear fracture mode and tensile-shear mixed fracture mode, can be observed in the tensile shear tests, and the joint that failed in the tensile-shear mixed fracture mode possessed a high carrying capability.


Sign in / Sign up

Export Citation Format

Share Document