The Possibility of the LME Phenomenon in Elements Subjected to Metallization in Zn Bath with Bi Addition

2015 ◽  
Vol 226 ◽  
pp. 167-172 ◽  
Author(s):  
Jacek Mendala

Article presents the state of knowledge relating occurrences of liquid metals embrittlement. The results of experimental investigations of the LME phenomenon, reasons of its formation and influence of different parameters are described. In order to determine the basic mechanical properties of materials intended for research static tensile test was performed. Samples made of C66D and C70D steels with tensions stretching (500-800 MPa) at different values and kinds of loading during the hot dip metallization were investigated. Coating processes were made in zinc with 0.5% Bi addition and results were compared to zinc coating. The processes of hot dip metallization were done at 450°C temperature and immersion time 180 s. Coated samples were investigated by light microscope to specify possibility appear of LME effect.

2014 ◽  
Vol 658 ◽  
pp. 167-172 ◽  
Author(s):  
Liviu Andrusca ◽  
Viorel Goanta ◽  
Paul Doru Barsanescu

Testing cruciform specimens subjected to biaxial tension is one of the most widely used experimental techniques and more accurate at this time to determine the mechanical properties of materials and to verify the failure theories. This type of experiment allows the continuous monitoring of behavior of materials from the beginning of deformation until fracture under different ratios of forces and directions of the deformation, which transforms it into a very versatile testing method. We have varied the number of parameters and their values in order to achieve a uniform distribution of biaxial state of stresses and strains in the area tested. In theory, any material can be tested by stretching a biaxial cruciform specimen, but must be investigated in what way the shape of the specimen influence the data obtained. In this paper are presented the requirements that must be fulfilled by the samples used for tensile / compression biaxial tests and the design of cruciform specimens through FEA that meet these demands.


1999 ◽  
Author(s):  
Takeru Ohki ◽  
Shinya Ikegaki ◽  
Ken Kurasiki ◽  
Hiroyuki Hamada ◽  
Masaharu Iwamoto

Abstract In this study, fracture behavior and strength in the flat braided bar with a circular hole were investigated by static and fatigue test. Two type of specimens were prepared. They are a braided flat bar with an integrally-formed braided hole and a braided flat bar with a machined hole. Moreover, we also examined a specimen that had a metal pin inserted at the circular hole. This specimen was subjected to a static tensile test. The results of the tensile tests indicate that the strength of the flat bar with a braided hole was larger than that of the one with the machined hole. Furthermore, from the results of the fatigue tests, the flat bar with the braided hole showed higher fatigue property than that of the one with the machined hole.


2000 ◽  
Vol 122 (4) ◽  
pp. 420-424 ◽  
Author(s):  
Takeru Ohki ◽  
Shinya Ikegaki ◽  
Ken Kurasiki ◽  
Hiroyuki Hamada ◽  
Masaharu Iwamoto

In this study, fracture behavior and strength in the flat braided bar with a circular hole were investigated by static and fatigue test. Two types of specimen were prepared. They are a braided flat bar with an integrally formed braided hole and a braided flat bar with a machined hole. Moreover, we also examined a specimen that had a metal pin inserted at the circular hole. This specimen was subjected to a static tensile test. The results of the tensile tests indicate that the strength of the flat bar with a braided hole was larger than that of the one with the machined hole. Furthermore, from the results of the fatigue tests, the flat bar with the braided hole showed higher fatigue property than that of the one with the machined hole. [S0094-4289(00)02604-9]


2017 ◽  
Vol 62 (3) ◽  
pp. 1713-1720
Author(s):  
J. Borowiecka-Jamrozek

Abstract This paper discusses the mechanical properties of materials fabricated from commercially available powders designed for use as a metal matrix of diamond-impregnated composites. The powders with the catalogue numbers CSA and CSA800 produced in China were tested under laboratory conditions. The specimens were fabricated in a graphite mould using hot pressing. The materials were analysed for density, porosity, hardness and static tensile strength. A scanning electron microscope (SEM) was employed to observe the microstructure and fracture surfaces of the specimens. The experimental data was used to determine how the chemical composition of the powders and the process parameters affected the microstructure and properties of the materials. The properties of the sintered materials produced from the Chinese powders were compared with the properties reported for specimens fabricated from cobalt powder (Co SMS). Even though the hot pressed CSA and CSA800 powders had inferior mechanical properties to their cobalt analogue, they seem well-suited for general-purpose diamond-impregnated tools with less demanding applications.


2019 ◽  
Author(s):  
Marek Jałbrzykowski ◽  
Sławomir Obidziński ◽  
Wioletta Świder ◽  
Magdalena Dołżyńska

The paper presents the research results of the impact of reduced graphene oxide (RGO) on selected mechanical and functional properties of LDPE foil. The foils were made by blow extrusion, with different amounts of RGO added to the granulate prior the extrusion process. Prepared foil samples were assessed for mechanical properties in a static tensile test and the assessment of their bacterial resistance was tested. The impact of RGO on antibacterial interactions and favorable mechanical properties of the foils were found. Analysis of the results allowed to select the most advantageous solution which was prepared for industrial applications.


2012 ◽  
Vol 557-559 ◽  
pp. 593-598
Author(s):  
Shao Kai Liao ◽  
Jing Nan Zhou

In the MTS testing machine, Quasi-static tensile mechanical testing is carried on to different Nano rubber epoxy, and have gained its mechanical properties; basing on the testing figures, ZWT constitutive model is used to descript the tensile mechanical properties of materials, and five parameter values are gained under low frequency of the model through numerical fitting; With the comparison of the test data , the numerical fitting result is in good agreement with test, at the same time, it also show that ZWT constitutive model can well descript the Quasi-static tensile mechanical properties of epoxy resin filled by nano-rubber.


2021 ◽  
Vol 11 (13) ◽  
pp. 6212
Author(s):  
Jozef Török ◽  
Monika Törökova ◽  
Darina Duplakova ◽  
Zuzana Murcinkova ◽  
Jan Duplak ◽  
...  

The present paper focuses on the configuration possibilities of post -processor influencing mechanical properties of a given test sample produced by the FDM printer from different materials. The research consists of assessing the composite material configurations through a static tensile test conducted on 80 samples produced. The samples were produced based on ISO 527-2 standard, type 1A, with a horizontal position and a layer height of 0.2 mm. The individual samples consisted of four basic groups of materials—the pure Polylactic acid (PLA) plastic (reference sample), and three composite samples with admixtures—PLA matrix with a copper admixture, PLA matrix with an iron admixture, and PLA matrix with a steel admixture. The static tensile test was conducted at a test speed of 5 mm/min. During the research, reference samples (pure PLA) were assessed in five orientations. Samples made of the PLA composite materials with admixtures were manufactured, tested, and evaluated only in the 0° orientation. The paper concludes by comparing the results of measurement with the original material, free from additives, and with the researched influence of the orientation of the prints on the resulting mechanical properties of shear samples and their surface structure. In the conducted experiments, the lowest tensile strength has been demonstrated in test samples the orbital transitions and the upper surface layers of which were parallel to the infill.


2021 ◽  
Vol 332 ◽  
pp. 01006
Author(s):  
Bartosz Nowinka ◽  
Dariusz Sykutera

The study presents the influence of content and orientation of continuous carbon fibers (CF) on the static tensile test results of a polyamide matrix (PA) composite, produced using Continuous Filament Fabrication (CFF) technology. Taking the polyamide’s crystalline structure into account, an attempt was also made to produce test specimens under various temperature conditions of the device chamber. The test samples were produced in use of the Mark Two device (Markforged, Great Britain). It has been shown that the content and orientation of the reinforcement in relation to the direction of stresses generated during the static tensile test, has a significant impact on the parameters determined in this test. The dependence presented in the article, confirms that materials in a thermoplastic matrix, reinforced with continuous fibers are a topic in line with the topic of current trends in fields of material engineering and design of structural products. The conducted research proves that the temperature in the working chamber of the Mark Two device affects formation of mechanical properties of PA+CF composites, fabricated using CFF technology. Manufacturing composites at elevated temperature resulted in significant decrease of E and Rm values for 4 out of five tests performed, but a considerable increase in their relative elongation at break was noticed.


2016 ◽  
Vol 61 (3) ◽  
pp. 1425-1430 ◽  
Author(s):  
K. Wojsyk ◽  
G. Golański ◽  
J. Jasak ◽  
J. Słania ◽  
A. Zieliński ◽  
...  

Abstract The paper presents the results of research on the influence of the time of annealing after welding at the temperature of 750°C on the mechanical properties of a homogeneous welded joint of T91 steel. The welded joints were annealed at 750°C for 0.5; 1.0; 1.5 and 2.0 hours. The research scope included the basic study, i.e. the measurement of hardness, the test of impact energy, the static tensile test, bending test, as well as the accelerated creep test. The results of the tests of mechanical properties indicate the possibility of using shorter annealing times for thin-walled welded joints, and thus the possibility of savings as a result of flexible heat treatments.


Sign in / Sign up

Export Citation Format

Share Document