scholarly journals Research on innovative foils for agricultural applications

2019 ◽  
Author(s):  
Marek Jałbrzykowski ◽  
Sławomir Obidziński ◽  
Wioletta Świder ◽  
Magdalena Dołżyńska

The paper presents the research results of the impact of reduced graphene oxide (RGO) on selected mechanical and functional properties of LDPE foil. The foils were made by blow extrusion, with different amounts of RGO added to the granulate prior the extrusion process. Prepared foil samples were assessed for mechanical properties in a static tensile test and the assessment of their bacterial resistance was tested. The impact of RGO on antibacterial interactions and favorable mechanical properties of the foils were found. Analysis of the results allowed to select the most advantageous solution which was prepared for industrial applications.

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Tomasz Rydzkowski ◽  
Kazimierz Reszka ◽  
Mieczysław Szczypiński ◽  
Michał Marek Szczypiński ◽  
Elżbieta Kopczyńska ◽  
...  

The aim of the present study is to examine the effect of the addition of carbon nanoparticles (σsp2 hybridization) on the mechanical properties of foamed polystyrene. In this work, we focus on the study of the impact of compressive stress, tensile strength, bending strength, thermal conductivity ratio (λ), and water absorption of expanded polystyrene (EPS) reinforced with reduced graphene oxide and graphite. The results were compared with pristine EPS and reduced graphene oxide-reinforced EPS. All the nanocomposite specimens used for testing had a similar density. The study reveals that the nanocomposites exhibit different thermal conductivities and mechanical properties in comparison to pristine EPS. The enhancement in the properties of the nanocomposite could be associated with a more extensive structure of elementary cells of expanded polystyrene granules.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1199 ◽  
Author(s):  
Liulong Guo ◽  
Hongxia Yan ◽  
Zhengyan Chen ◽  
Qi Liu ◽  
Yuanbo Feng ◽  
...  

A novel graphene-based nanocomposite particles (NH2-rGO/WS2), composed of reduced graphene oxide (rGO) and tungsten disulfide (WS2) grafted with active amino groups (NH2-rGO/WS2), was successfully synthesized by an effective and facile method. NH2-rGO/WS2 nanoparticles were then used to fabricate new bismaleimide (BMI) composites (NH2-rGO/WS2/BMI) via a casting method. The results demonstrated that a suitable amount of NH2-rGO/WS2 nanoparticles significantly improved the mechanical properties of the BMI resin. When the loading of NH2-rGO/WS2 was only 0.6 wt %, the impact and flexural strength of the composites increased by 91.3% and 62.6%, respectively, compared to the neat BMI resin. Rare studies have reported such tremendous enhancements on the mechanical properties of the BMI resin with trace amounts of fillers. This is attributable to the unique layered structure of NH2-rGO/WS2 nanoparticles, fine interfacial adhesion, and uniform dispersion of NH2-rGO/WS2 in the BMI resin. Besides, the thermal gravimetrical analysis (TGA) revealed that the addition of NH2-rGO/WS2 could also improve the stability of the composites.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1137
Author(s):  
Sascha Stanic ◽  
Thomas Koch ◽  
Klaus Schmid ◽  
Simone Knaus ◽  
Vasiliki-Maria Archodoulaki

Blends of two long-chain branched polypropylenes (LCB-PP) and five linear polypropylenes (L-PP) were prepared in a single screw extruder at 240 °C. The two LCB-PPs were self-created via reactive extrusion at 180 °C by using dimyristyl peroxydicarbonate (PODIC C126) and dilauroyl peroxide (LP) as peroxides. For blending two virgin and three recycled PPs like coffee caps, yoghurt cups and buckets with different melt flow rate (MFR) values were used. The influence of using blends was assessed by investigating the rheological (dynamic and extensional rheology) and mechanical properties (tensile test and impact tensile test). The dynamic rheology indicated that the molecular weight as well as the molecular weight distribution could be increased or broadened. Also the melt strength behavior could be improved by using the two peroxide modified LCB-PP blends on the basis of PODIC C126 or PEROXAN LP (dilauroyl peroxide). In addition, the mechanical properties were consistently enhanced or at least kept constant compared to the original material. In particular, the impact tensile strength but also the elongation at break could be increased considerably. This study showed that the blending of LCB-PP can increase the investigated properties and represents a promising option, especially when using recycled PP, which demonstrates a real “up-cycling” process.


2021 ◽  
Author(s):  
HASHIM AL MAHMUD ◽  
, MATTHEW RADUE ◽  
WILLIAM PISANI ◽  
GREGORY ODEGARD

The impact on the mechanical properties of unidirectional carbon fiber (CF)/epoxy composites reinforced with pristine graphene nanoplatelets (GNP), highly concentrated graphene oxide (GO), and Functionalized Graphene Oxide (FGO) are investigated in this study. The localized reinforcing effect of each of the graphene nanoplatelet types on the epoxy matrix is predicted at the nanoscale-level by molecular dynamics. The bulk-level mechanical properties of unidirectional CF/epoxy hybrid composites are predicted using micromechanics techniques considering the reinforcing function, content, and aspect ratios for each of the graphene nanoplatelets. In addition, the effect of nanoplatelets dispersion level is also investigated for the pristine graphene nanoplatelets considering a lower dispersion level with four layers of graphene nanoplatelets (4GNP). The results indicate that the shear and transverse properties are significantly affected by the nanoplatelet type, loading and aspect ratio. The results of this study can be used in the design of hybrid composites to tailor specific laminate properties by adjusting nanoplatelet parameters.


2019 ◽  
Vol 163 ◽  
pp. 77-85 ◽  
Author(s):  
Faisal Nazeer ◽  
Zhuang Ma ◽  
Lihong Gao ◽  
Fuchi Wang ◽  
Muhammad Abubaker Khan ◽  
...  

2018 ◽  
Vol 136 (10) ◽  
pp. 47164 ◽  
Author(s):  
Xin Zhang ◽  
Yahui Ma ◽  
Yingjin Pei ◽  
Shuojin Zheng ◽  
Qinghong Fang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Moučka ◽  
M. Sedlačík ◽  
J. Osička ◽  
V. Pata

AbstractDue to its simple curing and very good mechanical properties, Sylgard 184 belongs to the most widely and frequently used silicones in many industrial applications such as microfluidics and microengineering. On top of that its mechanical properties are further controllable through the curing temperature, which may vary from ambient temperature up to 200 °C; the lower the curing temperature the lower the mechanical properties (Johnston et al. in J Micromech Microeng 24:7, 2014. 10.1088/0960-1317/24/3/035017). However, certain specialised application may require even a softer binder than the low curing temperature allows for. In this study we show that this softening can be achieved with the addition of silicone oil into the Sylgard 184 system. To this end a series of Sylgard 184 samples with varying silicone oil concentrations were prepared and tested (tensile test, rotational rheometer) in order to determine how curing temperature and silicone oil content affect mechanical properties. Curing reaction of the polymer system was found to observe 2nd order kinetics in all cases, regardless the oil concentration used. The results suggest that within the tested concentration range the silicone oil addition can be used to soften commercial silicone Sylgard 184.


RSC Advances ◽  
2017 ◽  
Vol 7 (52) ◽  
pp. 32731-32731 ◽  
Author(s):  
Santosh Kr. Tiwari ◽  
Kartikey Verma ◽  
Pupulata Saren ◽  
Ramesh Oraon ◽  
Amrita De Adhikari ◽  
...  

Correction for ‘Manipulating selective dispersion of reduced graphene oxide in polycarbonate/nylon 66 based blend nanocomposites for improved thermo-mechanical properties’ by Santosh Kr. Tiwari et al., RSC Adv., 2017, 7, 22145–22155.


1999 ◽  
Author(s):  
Takeru Ohki ◽  
Shinya Ikegaki ◽  
Ken Kurasiki ◽  
Hiroyuki Hamada ◽  
Masaharu Iwamoto

Abstract In this study, fracture behavior and strength in the flat braided bar with a circular hole were investigated by static and fatigue test. Two type of specimens were prepared. They are a braided flat bar with an integrally-formed braided hole and a braided flat bar with a machined hole. Moreover, we also examined a specimen that had a metal pin inserted at the circular hole. This specimen was subjected to a static tensile test. The results of the tensile tests indicate that the strength of the flat bar with a braided hole was larger than that of the one with the machined hole. Furthermore, from the results of the fatigue tests, the flat bar with the braided hole showed higher fatigue property than that of the one with the machined hole.


Sign in / Sign up

Export Citation Format

Share Document