Effect of a Notch on Impact Resistance of the Epidian 57/Z1 Epoxy Material after "Thermal Shock"

2015 ◽  
Vol 240 ◽  
pp. 161-167 ◽  
Author(s):  
Mariusz Kłonica ◽  
Józef Kuczmaszewski ◽  
Sylwester Samborski

Adhesive bonding is increasingly being applied as structural joining technique in highly reliable machines and appliances operating in the circumstances of variable thermomechanical loads.The manufactured specimens of the Epidian 57/Z-1 epoxy material had been subjected to cyclic thermal loading, with respect to a defined program, in a thermal shock chamber within a temperature range of ‑40°C to +60°C for 200 cycles. The accepted temperature range was typical for machinery maintenance, including the aircraft.The aim of the research was first of all determination of thermal load (fatigue), as well as the presence of notch effect on the resistance to fracture.A significant measure of the adhesive bonds quality is the repeatability of the strength examination results, both in the summary and long lasting tests. It is often more important criterion for the adhesive joint selection than higher strength of the joints using the particular adhesive.The obtained results of the conducted research have been elaborated statistically with respect to the appropriate scientific standards.

1991 ◽  
Vol 64 (4) ◽  
pp. 545-558 ◽  
Author(s):  
A. Stevenson ◽  
A. M. Priest

Abstract 1. Life Prediction methods may be used to characterize the durability of adhesive bonds of elastomers to rigid substrates. The primary rate determining mechanism of bond failure is considered to be electrochemical in nature, and its rate may be characterized on an Arrhenius basis. 2. Assumption of a single mechanism (and single activation energy) cannot be made across a wide temperature range. Two different regimes were discovered within the temperature range 20 to 90°C for both sea water and oil environments. 3. Durable bonds between elastomers and structural polymer/composites can be formed using normal rubber technology for rubber/metal bonding. In the case of bond durability in iso-octane/toluene at 90°C bonds of HNBR to E-glass composite surpassed those of HNBR to stainless steel. 4. These methods provide a scientific basis for quantitative determination of the life of engineering components in service. Further research is required at present for each new application, but wider use of these techniques in the future is anticipated, especially for critical applications where component replacement is costly or hazardous. This knowledge can provide confidence for engineers to make more extensive use of those adhesive systems in more demanding applications.


Author(s):  
David M Hudson

Abstract Freshwater crustaceans are distributed throughout the montane and lowland areas of Colombia, and are therefore a useful indicator group for how aquatic species will respond to climate change. As such, metabolic determination of physiological performance was evaluated for the Colombian pseudothelphusid crab, Neostrengeria macropa (H. Milne Edwards, 1853), over a temperature range inclusive of current temperatures and those predicted by future scenarios in the plateau around the city of Bogotá, namely from 8 °C to 30 °C. The performance results mostly aligned with previous exploratory behavioral determination of the ideal temperature range in the same species, although the metabolism increased at the highest temperature treatments, a point when exploratory behavior declined. These results indicate that this species of montane crab behaviorally compensates for increased thermal stress by decreasing its physical activity, which could have negative predator-prey consequences with changes to community structure as different species undergo climate-mediated geographic range shifts in the region. As this species is endemic to the plateau surrounding Bogotá, it also experiences a number of other stressors to its survival, including infrastructure development and invasive species.


2021 ◽  
Author(s):  
Stephanie Jones ◽  
Mohit Singh ◽  
Denis Duft ◽  
Alexei Kiselev ◽  
Thomas Leisner

<p>The impact of atmospheric aerosol on the climate remains poorly understood. Organic aerosol makes up a significant fraction of total aerosol and is prevalent throughout the atmosphere. It can exist as a liquid, semi-solid or amorphous solid. The viscosity of organic aerosol will have an impact on transformations that organic aerosol will undergo during its lifetime such as evaporation and growth, heterogeneous and photochemical reactions as well as the ability to act as an ice nucleating particle.  Therefore, it is of key importance to be able to determine aerosol viscosity over a range of atmospherically relevant conditions in order to better understand the impact of organic aerosol on the climate.</p> <p>Here we report proof of concept viscosity measurements of water droplets levitated in an electrodynamic balance over a range of temperatures. Charged droplets are levitated in a temperature and relative humidity-controlled environment allowing properties over a temperature range of 300 to 220 K to be studied. As the droplets evaporate they reach a point where Coulomb instabilities are induced resulting in droplet oscillations. The relaxation of these oscillations can then be probed to determine the droplet viscosity. Future work will involve determination of the viscosity of different types of organic aerosol over a broad temperature range.</p>


2021 ◽  
pp. 35-40
Author(s):  
Denis Y. Kutovoy ◽  
Igor A. Yatsenko ◽  
Vladimir B. Yavkin ◽  
Aydar N. Mukhametov ◽  
Petr V. Lovtsov ◽  
...  

The actual problem of the possibility of using the equations of state for the gas phase of natural gas at temperatures below 250 K is considered. To solve it, the compressibility coefficients of natural gas obtained experimentally with high accuracy are required. The technique was developed and experimental study was carried out of compressibility factor aiming expanding temperature range of the state equations GERG-2004 and AGA8-DC92. The proposed technique is based on the fact that to assess the applicability of the equation of state, it is sufficient to obtain the relative value of the compressibility coefficient and not to determine its absolute value. The technique does not require complex equipment and provides high accuracy. The technique was tested on nitrogen, argon, air and methane. Uncertainty of determination of the compressibility factor is not greater than 0.1 %. For two different compositions of natural gas, obtained experimental data were demonstrated that the equations of state GERG-2004 and AGA8-92DC provide uncertainty of the calculation of the compressibility coefficient within 0.1 % in the temperature range from 220 K to 250 K and pressure below 5 MPa.


2020 ◽  
Vol 15 (7) ◽  
pp. 950-957
Author(s):  
G.D. Mezhetskiy ◽  
◽  
V.A. Strelnikov ◽  

The article presents the results of studies of the thermal fatigue strength of diesel cylinder heads and their resource under operating conditions, by using the most advanced technology for their restoration. Based on the results of theoretical calculations of durability and operational studies, a restoration technology has been proposed, which makes it possible to increase the resource of cylinder heads by 2 ÷ 2.5 times. For this purpose, the non-uniformity of the temperature field on the firing bottom of the cylinder heads of YaMZ-238NB diesel engines was theoretically determined and experimentally confirmed. On the basis of theoretical calculations, the most heatstressed sections of the plane of the cylinder heads of diesel engines bonded to the cylinder block were determined, and the appearance of cracks in them. When developing a method for calculating the temperature fields of the fire bottom, the universal finite element method (FEM) was used. This method makes it possible to take into account the geometry and conditions of thermal loading of the cylinder heads quite accurately. For the determination of temperature fields, a well-founded assignment of the boundary conditions is crucial. With this in mind, a number of surfaces were determined that characterize the durability of the entire part during operation. As a result of calculations carried out on a computer, temperature fields have been obtained that make it possible to analyze the distribution of temperatures and temperature gradients at any point of the fire bottom. The highest temperatures (620...635K) are localized in the central part of the fire bottom, which is two times higher in thermal intensity than the peripheral one and confirms the appearance of cracks in these places during the operation of diesel cylinder heads.


2021 ◽  
Author(s):  
GONZALO SEISDEDOS ◽  
BRIAN HERNANDEZ ◽  
JULIETTE DUBON ◽  
MARIANA ONTIVEROS ◽  
BENJAMIN BOESL ◽  
...  

Adhesive bonding has been shown to successfully address some of the main problems with traditional fasteners, such as the reduction of the overall weight and a more uniformly distributed stress state. However, due to the unpredictability of failure of adhesive bonds, their use is not widely accepted in the aerospace industry. Unlike traditional fastening methods, it is difficult to inspect the health of an adhesive joint once it has been cured. For adhesive bonding to be widely accepted and implemented, there must be a better understanding of the fracture mechanism of the adhesive joints, as well as a way to monitor the health of the bonds nondestructively. Therefore, in-field structural health monitoring is an important tool to ensure optimal condition of the bond is present during its lifetime. This project focuses on the advancement of a non-invasive field instrument for evaluation of the health of the adhesive joints. The tool developed is based on a B-H looper system where coils are arranged into a noise-cancellation configuration to measure the magnetic susceptibility of the samples with a lock-in amplifier. The B-H looper system can evaluate the state of damage in an adhesive bond by detecting changes in surface charge density at the molecular level of an epoxy-based adhesive doped with magneto-electric nanoparticles (MENs). Epoxy-based adhesive samples were doped with MENs and then scanned using the B-H looper system. To evaluate the health of the adhesive joint, microindentation and tensile tests were performed on MENs-doped adhesive samples to understand the relationship between mechanical damage and magnetic signal. Correlations between magnetic signatures and mechanical damage were minimally observed, thus future studies will focus on refining the procedure and damaging methodology.


Sign in / Sign up

Export Citation Format

Share Document