Determination of the viscosity of levitated droplets at atmospheric temperatures in an electrodynamic trap

2021 ◽  
Author(s):  
Stephanie Jones ◽  
Mohit Singh ◽  
Denis Duft ◽  
Alexei Kiselev ◽  
Thomas Leisner

<p>The impact of atmospheric aerosol on the climate remains poorly understood. Organic aerosol makes up a significant fraction of total aerosol and is prevalent throughout the atmosphere. It can exist as a liquid, semi-solid or amorphous solid. The viscosity of organic aerosol will have an impact on transformations that organic aerosol will undergo during its lifetime such as evaporation and growth, heterogeneous and photochemical reactions as well as the ability to act as an ice nucleating particle.  Therefore, it is of key importance to be able to determine aerosol viscosity over a range of atmospherically relevant conditions in order to better understand the impact of organic aerosol on the climate.</p> <p>Here we report proof of concept viscosity measurements of water droplets levitated in an electrodynamic balance over a range of temperatures. Charged droplets are levitated in a temperature and relative humidity-controlled environment allowing properties over a temperature range of 300 to 220 K to be studied. As the droplets evaporate they reach a point where Coulomb instabilities are induced resulting in droplet oscillations. The relaxation of these oscillations can then be probed to determine the droplet viscosity. Future work will involve determination of the viscosity of different types of organic aerosol over a broad temperature range.</p>

2016 ◽  
Vol 16 (10) ◽  
pp. 6495-6509 ◽  
Author(s):  
Karoliina Ignatius ◽  
Thomas B. Kristensen ◽  
Emma Järvinen ◽  
Leonid Nichman ◽  
Claudia Fuchs ◽  
...  

Abstract. There are strong indications that particles containing secondary organic aerosol (SOA) exhibit amorphous solid or semi-solid phase states in the atmosphere. This may facilitate heterogeneous ice nucleation and thus influence cloud properties. However, experimental ice nucleation studies of biogenic SOA are scarce. Here, we investigated the ice nucleation ability of viscous SOA particles. The SOA particles were produced from the ozone initiated oxidation of α-pinene in an aerosol chamber at temperatures in the range from −38 to −10 °C at 5–15 % relative humidity with respect to water to ensure their formation in a highly viscous phase state, i.e. semi-solid or glassy. The ice nucleation ability of SOA particles with different sizes was investigated with a new continuous flow diffusion chamber. For the first time, we observed heterogeneous ice nucleation of viscous α-pinene SOA for ice saturation ratios between 1.3 and 1.4 significantly below the homogeneous freezing limit. The maximum frozen fractions found at temperatures between −39.0 and −37.2 °C ranged from 6 to 20 % and did not depend on the particle surface area. Global modelling of monoterpene SOA particles suggests that viscous biogenic SOA particles are indeed present in regions where cirrus cloud formation takes place. Hence, they could make up an important contribution to the global ice nucleating particle budget.


2008 ◽  
Vol 141-143 ◽  
pp. 343-348 ◽  
Author(s):  
Manel da Silva ◽  
Alain Lemieux ◽  
Hugues Blanchette ◽  
X. Grant Chen

The “Rheo-Characterizer” is an apparatus designed to assess the quality control of the semi-solid material. The working principle is based on the recording and subsequent analysis of the force required to transversally cut the semi-solid slurry at constant speed. Semi-solid slurries produced under different conditions while using the SEED process were analyzed with the “Rheo- Characterizer”. The TiB2 grain refiner was also added to evaluate the impact on the microstructure and the cutting force. The microstructural features were measured and the grain size was analyzed for the different processing conditions. The effect of the cutting temperature on the resulting curve was also investigated. The results show that the “Rheo-Characterizer” is capable of differentiating between the varied microstructural morphologies and the solid fraction of the billet.


2015 ◽  
Vol 15 (20) ◽  
pp. 28575-28617 ◽  
Author(s):  
E. Järvinen ◽  
K. Ignatius ◽  
L. Nichman ◽  
T. B. Kristensen ◽  
C. Fuchs ◽  
...  

Abstract. Under certain conditions, secondary organic aerosol (SOA) particles can exist in the atmosphere in an amorphous solid or semi-solid state. To determine their relevance to processes such as ice nucleation or chemistry occurring within particles requires knowledge of the temperature and relative humidity (RH) range for SOA to exist in these states. In the CLOUD experiment at CERN, we deployed a new in-situ optical method to detect the viscosity of α-pinene SOA particles and measured their transition from the amorphous viscous to liquid state. The method is based on the depolarising properties of laboratory-produced non-spherical SOA particles and their transformation to non-depolarising spherical liquid particles during deliquescence. We found that particles formed and grown in the chamber developed an asymmetric shape through coagulation. A transition to spherical shape was observed as the RH was increased to between 35 % at −10 °C and 80 % at −38 °C, confirming previous calculations of the viscosity transition conditions. Consequently, α-pinene SOA particles exist in a viscous state over a wide range of ambient conditions, including the cirrus region of the free troposphere. This has implications for the physical, chemical and ice-nucleation properties of SOA and SOA-coated particles in the atmosphere.


Author(s):  
Tareq Mohammed Dhannoon AL Taie

The BRICS countries have a historical aspiration for global leadership, especially Russia and China, and other countries trying to have a position in the pyramid of international powers in the twenty-first century, especially Brazil, India and South Africa, they worked to unify their efforts, in order to achieve integration in the strategic action, activate its role in International affairs, ending American domination , and restructuring an international system that have an active role in its interactions.       The research hypothesis is based on the idea that the BRICS group, despite the nature of its economic composition and its long-term goals, but its political influence as a bloc, is greater than the proportion of its economic influence in restructuring the new international order. The BRICS group has the capabilities to reshape the international order, but disputes among some of its members represent a challenge to its future work. Its goals will not be achieved without teamwork. Third world countries, especially those that reject unipolarism, have regarded one of the pillars supporting multi-polarity, aiming of giving them freedom of movement in international relations. The ultimate goal of the BRICS is a political nature, as economic mechanisms are used to achieve political goals.


Author(s):  
Evgeniya Mikhailovna Popova ◽  
Guzel Mukhtarovna Guseinova ◽  
Sergei Borisovich Milov

The deficit of subnational budgets and deceleration capital investments in multiple Russian regions increase the relevance of research aimed at improvement of tax incentivizing practice of the regional investment process. The studies focused on determination of the impact of socioeconomic and institutional factors upon the efficiency of investment tax expenses obtained wide circulation within the foreign scientific literature. The subject of this article is the assessment of sensitivity of the efficiency of regional tax expanses towards investment attractiveness of the types of economic activity carried out by the residents of territories of advanced socioeconomic development, created in the subjects of Far Easter Federal District. The scientific novelty and practical values of this research consists in substantiation of the reasonableness of assessment of investment attractiveness of the types of economic activity that are stimulated by tax incentives. Methodology for assessing investment attractiveness is proposed and tested. The conclusion is made that in case of low investment attractiveness of the type of economic activity, which was planned to support by tax incentives, it is required to conduct and additional analysis to avoid unjustified tax expanses.


2019 ◽  
pp. 392-400 ◽  
Author(s):  
Gunnar Kleuker ◽  
Christa M. Hoffmann

The harvest of sugar beet leads to root tip breakage and surface damage through mechanical impacts, which increase storage losses. For the determination of textural properties of sugar beet roots with a texture analyzer a reliable method description is missing. This study aimed to evaluate the impact of washing, soil tare, storage period from washing until measurement, sample distribution and number of roots on puncture and compression measurements. For this purpose, in 2017 comprehensive tests were conducted with sugar beet roots grown in a greenhouse. In a second step these tests were carried out with different Beta varieties from a field trial, and in addition, a flexural test was included. Results show that the storage period after washing and the sample distribution had an influence on the puncture and compression strength. It is suggested to wash the roots by hand before the measurement and to determine the strength no later than 48 h after washing. For reliable and comparable results a radial distribution of measurement points around the widest circumference of the root is recommended for the puncture test. The sample position of the compression test had an influence on the compressive strength and therefore, needs to be clearly defined. For the puncture and the compression test it was possible to achieve stable results with a small sample size, but with increasing heterogeneity of the plant stand a higher number of roots is required. The flexural test showed a high variability and is, therefore, not recommended for the analysis of sugar beet textural properties.


2020 ◽  
Vol 16 (6) ◽  
pp. 752-762
Author(s):  
Vivek Nalawade ◽  
Vaibhav A. Dixit ◽  
Amisha Vora ◽  
Himashu Zade

Background: Food and herbal extracts rich in Quercetin (QRT) are often self-medicated by diabetics and can potentially alter the pharmacokinetics (PK) of Metformin HCl (MET) and Canagliflozin (CNG) leading to food or herb-drug interactions and reduced therapeutic efficacy. However, the impact of these flavonoids on the pharmacokinetic behaviour of MET and CNG is mostly unknown. Methods: A simple one-step protein precipitation method was developed for the determination of MET and CNG from rat plasma. The mobile phase chosen was MeOH 65% and 35% water containing 0.1% formic acid at a flow rate of 1mL/min. Results: The retention time of MET, internal standard (Valsartan) and CNG was 1.83, 6.2 and 8.2 min, respectively. The method was found to be linear in the range of 200 - 8000 ng/mL for CNG and 100 = 4000 ng/ml for MET. Precision and accuracy of the method were below 20% at LLOQ and below 15% for LQC, MQC, and HQC. Conclusion: The method was successfully applied for the determination of PK of MET and CNG by using 100 μL of rat plasma. QRT co-administration affects the PK parameters of MET and CNG. This alteration in PK parameters might be of significant use for clinicians and patients.


Sign in / Sign up

Export Citation Format

Share Document