Development of Parametric Kelvin Structures will Closed Cells

2016 ◽  
Vol 254 ◽  
pp. 49-54 ◽  
Author(s):  
Dan Andrei Şerban ◽  
Emanoil Linul ◽  
Sorin Sărăndan ◽  
Liviu Marşavina

This work presents the design of a parametric Kelvin structure in which the relative density of the geometry can be varied by adjusting three parameters: cell diameter, cell wall thickness and cell chamfer radius, the structure consistsing of a tessellation of hollow truncated octahedral. The developed model was evaluated in terms of compressive stiffness for the case of a rigid polyurethane foam of 0.256 relative density. Three models were analyzed in order to determine the influence of geometric characteristics on mechanical properties: a model that presented no chamfer a model that presented a medium-sized chamfer and a model that presented a large chamfer. A mesh convergence study was performed which analyzed the results in terms of accuracy and time expenses for three element sizes for both linear and quadratic elements. Due to the orthotropic nature of the model, its response on both possible loading directions was investigated. Simulation results were compared with experimental results and yielded accurate results for one loading direction, when using the material properties for solid polyurethane described in literature.

2004 ◽  
Vol 844 ◽  
Author(s):  
Amanpreet K. Bembey ◽  
Vanessa Koonjul ◽  
Andrew J. Bushby ◽  
Virginia L. Ferguson ◽  
Alan Boyde

ABSTRACTCortical bone is an anisotropic material, and its mechanical properties are determined by its composition as well as its microstructure. Mechanical properties of bone are a consequence of the proportions of, and the interactions between, mineral, collagen and water. Mid-shaft palmar cortical tissue from the equine third metacarpal bone is relatively dense and uniform with low porosity. The mainly primary osteons are aligned to within a few degrees of the long axis of the bone. Beams of compact cortical bone were prepared to examine effects of dehydration and embedding and to study contribution of collagen and mineral to nano-scale material properties. Five beams were tested: untreated (hydrated); 100% ethanol (dehydrated); or embedded in poly-methylmethacrylate (PMMA) for one normal, one decalcified, and one deproteinated bone sample. Elastic modulus was obtained by nanoindentation using spherical indenters, with the loading direction transverse [1] and longitudinal to the bone axis. By selectively removing water, mineral and organic components from the composite, insights into the ultrastructure of the tissue can be gained from the corresponding changes in the experimentally determined elastic moduli.


2013 ◽  
Vol 535-536 ◽  
pp. 377-380
Author(s):  
Ling Ling Hu ◽  
Tong Xi Yu

The y-directional mechanical properties of hexagonal honeycombs with various cell-wall angles are explored. The results of both the quasi-static experiments and the dynamic simulations show that the cell-wall angle has a significant influence on the honeycombs’ mechanical properties, although the latter is dominated by the honeycombs’ relative density. This influence is weakened by the increase of the impact velocity. With retaining the honeycombs’ relative density as constant, the honeycomb with the cell-wall angle of about 45o exhibits the optimal crushing strength and energy absorption capacity.


2004 ◽  
Vol 841 ◽  
Author(s):  
Amanpreet K. Bembey ◽  
Vanessa Koonjul ◽  
Andrew J. Bushby ◽  
Virginia L. Ferguson ◽  
Alan Boyde

ABSTRACTCortical bone is an anisotropic material, and its mechanical properties are determined by its composition as well as its microstructure. Mechanical properties of bone are a consequence of the proportions of, and the interactions between, mineral, collagen and water. Mid-shaft palmar cortical tissue from the equine third metacarpal bone is relatively dense and uniform with low porosity. The mainly primary osteons are aligned to within a few degrees of the long axis of the bone. Beams of compact cortical bone were prepared to examine effects of dehydration and embedding and to study contribution of collagen and mineral to nano-scale material properties. Five beams were tested: untreated (hydrated); 100% ethanol (dehydrated); or embedded in poly-methylmethacrylate (PMMA) for one normal, one decalcified, and one deproteinated bone sample. Elastic modulus was obtained by nanoindentation using spherical indenters, with the loading direction transverse [1] and longitudinal to the bone axis. By selectively removing water, mineral and organic components from the composite, insights into the ultrastructure of the tissue can be gained from the corresponding changes in the experimentally determined elastic moduli.


2003 ◽  
Vol 774 ◽  
Author(s):  
Janice L. McKenzie ◽  
Michael C. Waid ◽  
Riyi Shi ◽  
Thomas J. Webster

AbstractCarbon nanofibers possess excellent conductivity properties, which may be beneficial in the design of more effective neural prostheses, however, limited evidence on their cytocompatibility properties exists. The objective of the present in vitro study was to determine cytocompatibility and material properties of formulations containing carbon nanofibers to predict the gliotic scar tissue response. Poly-carbonate urethane was combined with carbon nanofibers in varying weight percentages to provide a supportive matrix with beneficial bulk electrical and mechanical properties. The substrates were tested for mechanical properties and conductivity. Astrocytes (glial scar tissue-forming cells) were seeded onto the substrates for adhesion. Results provided the first evidence that astrocytes preferentially adhered to the composite material that contained the lowest weight percentage of carbon nanofibers. Positive interactions with neurons, and, at the same time, limited astrocyte functions leading to decreased gliotic scar tissue formation are essential for increased neuronal implant efficacy.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 954
Author(s):  
Hailong Wang ◽  
Wenping Deng ◽  
Tao Zhang ◽  
Jianhua Yao ◽  
Sujuan Wang

Material properties affect the surface finishing in ultra-precision diamond cutting (UPDC), especially for aluminum alloy 6061 (Al6061) in which the cutting-induced temperature rise generates different types of precipitates on the machined surface. The precipitates generation not only changes the material properties but also induces imperfections on the generated surface, therefore increasing surface roughness for Al6061 in UPDC. To investigate precipitate effect so as to make a more precise control for the surface quality of the diamond turned Al6061, it is necessary to confirm the compositions and material properties of the precipitates. Previous studies have indicated that the major precipitate that induces scratch marks on the diamond turned Al6061 is an AlFeSi phase with the composition of Al86.1Fe8.3Si5.6. Therefore, in this paper, to study the material properties of the AlFeSi phase and its influences on ultra-precision machining of Al6061, an elastoplastic-damage model is proposed to build an elastoplastic constitutive model and a damage failure constitutive model of Al86.1Fe8.3Si5.6. By integrating finite element (FE) simulation and JMatPro, an efficient method is proposed to confirm the physical and thermophysical properties, temperature-phase transition characteristics, as well as the stress–strain curves of Al86.1Fe8.3Si5.6. Based on the developed elastoplastic-damage parameters of Al86.1Fe8.3Si5.6, FE simulations of the scratch test for Al86.1Fe8.3Si5.6 are conducted to verify the developed elastoplastic-damage model. Al86.1Fe8.3Si5.6 is prepared and scratch test experiments are carried out to compare with the simulation results, which indicated that, the simulation results agree well with those from scratch tests and the deviation of the scratch force in X-axis direction is less than 6.5%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Ghadami ◽  
E. Taheri-Nassaj ◽  
H. R. Baharvandi ◽  
F. Ghadami

AbstractHfB2, Si, and activated carbon powders were selected to fabricate 0–30 vol% SiC reinforced HfB2-based composite. Pressureless sintering process was performed at 2050 °C for 4 h under a vacuum atmosphere. Microstructural studies revealed that in situ SiC reinforcement was formed and distributed in the composite according to the following reaction: Si + C = SiC. A maximum relative density of 98% was measured for the 20 vol% SiC containing HfB2 composite. Mechanical investigations showed that the hardness and the fracture toughness of these composites were increased and reached up to 21.2 GPa for HfB2-30 vol% SiC and 4.9 MPa.m1/2 for HfB2-20 vol% SiC, respectively. Results showed that alpha-SiC reinforcements were created jagged, irregular, and elongated in shape which were in situ formed between HfB2 grains and filled the porosities. Formation of alpha-SiC contributed to improving the relative density and mechanical properties of the composite samples. By increasing SiC content, an enhanced trend of thermal conductivity was observed as well as a reduced trend for electrical conductivity.


Author(s):  
Xiaobing Dang ◽  
Ruxu Du ◽  
Kai He ◽  
Qiyang Zuo

As a light-weight material with high stiffness and strength, cellular metal has attracted a lot of attentions in the past two decades. In this paper, the structure and mechanical properties of aluminum cellular metal with periodic cubic cells are studied. The aluminum cellular metal is fabricated by sheet metal stamping and simple adhesion. Two sizes of specimens with cell sizes of 3mm and 5mm are fabricated. Their relative density and mechanical properties are tested by means of experiments. The results show that the cubic-cell cellular metal has high and predictable strength and hence, can be used for many practical applications.


2004 ◽  
Vol 126 (2) ◽  
pp. 137-156 ◽  
Author(s):  
A.-J. Wang ◽  
D. L. McDowell

In-plane mechanical properties of periodic honeycomb structures with seven different cell types are investigated in this paper. Emphasis is placed on honeycombs with relative density between 0.1 and 0.3, such that initial yield is associated with short column compression or bending, occurring prior to elastic buckling. Effective elastic stiffness and initial yield strength of these metal honeycombs under in-plane compression, shear, and diagonal compression (for cell structures that manifest in-plane anisotropy) are reported as functions of relative density. Comparison among different honeycomb structures demonstrates that the diamond cells, hexagonal periodic supercells composed of six equilateral triangles and the Kagome cells have superior in-plane mechanical properties among the set considered.


2016 ◽  
Vol 697 ◽  
pp. 510-514 ◽  
Author(s):  
Feng Rui Zhai ◽  
Ke Shan ◽  
Ruo Meng Xu ◽  
Min Lu ◽  
Zhong Zhou Yi ◽  
...  

In the present paper, the ZrB2/h-BN multiphase ceramics were fabricated by SPS (spark plasma sintering) technology at lower sintering temperature using h-BN, ZrO2, AlN and Si as raw materials and B2O3 as a sintering aid. The phase constitution and microstructure of specimens were analyzed by XRD and SEM. Moreover, the effects of different sintering pressures on the densification, microstructure and mechanical properties of ZrB2/h-BN multiphase ceramics were also systematically investigated. The results show that the ZrB2 was obtained through solid phase reaction at different sintering pressures, and increasing sintering pressure could accelerate the formation of ZrB2 phase. As the sintering pressure increasing, the fracture strength and toughness of the sintered samples had a similar increasing tendency as the relative density. The better comprehensive properties were obtained at given sintering pressure of 50MPa, and the relative density, fracture strength and toughness reached about 93.4%, 321MPa and 3.3MPa·m1/2, respectively. The SEM analysis shows that the h-BN grains were fine and uniform, and the effect of sintering pressure on grain size was inconspicuous. The distribution of grain is random cross array, and the fracture texture was more obvious with the increase of sintering pressure. The fracture mode of sintered samples remained intergranular fracture mechanism as sintering pressure changed, and the grain refinement, grain pullout and crack deflection helped to increase the mechanical properties.


2012 ◽  
Vol 532-533 ◽  
pp. 234-237
Author(s):  
Wei Lai Chen ◽  
Ding Hong Yi ◽  
Jian Fu Zhang

The purpose of this paper is to study the effect of high temperature in injection molding process on mechanical properties of the warp-knitted and nonwoven composite fabrics (WNC)used in car interior. Tensile, tearing and peeling properties of WNC fabrics were tested after heat treatment under120, 140,160,180°C respectively. It was found that, after 140°C heat treatment, the breaking and tearing value of these WNC fabrics are lower than others. The results of this study show that this phenomenon is due to the material properties of fabrics. These high temperatures have no much effect on peeling properties of these WNC fabrics. It is concluded that in order to preserve the mechanical properties of these WNC fabrics, the temperature near 140°C should be avoided possibly during injection molding process.


Sign in / Sign up

Export Citation Format

Share Document