Toward CO2 Beam Cleaning of 20-nm Particles in Atmospheric Pressure

2016 ◽  
Vol 255 ◽  
pp. 172-175
Author(s):  
Joo Noh Kim ◽  
Jae Hong Lee ◽  
Seung Ho Kim ◽  
Jin Kyu Kim ◽  
Ki Hoon Choi ◽  
...  

We propose an optimal strategy for cleaning 20-nm contaminants in atmospheric pressure by using CO2 solid particles injected from a supersonic nozzle. We found that an excessively small exit diameter of the nozzle results in the shock wave, which decreases the particle removal efficiency (PRE). Based on the incompressible flow theory, we developed a supersonic nozzle that can issue CO2 solid particles without shock wave. The shape of CO2 beam and PRE of the developed nozzle are compared with the results of a pre-existing nozzle for vacuum condition by analyzing scanning electron microscopy (SEM) image of substrates. The results show that when we use the newly developed nozzle in atmospheric pressure, PRE is above 95 % without pattern damage. This work can pave the way for cleaning nanoscale contaminants that occur during manufacture of semiconductor chips at little cost.

1990 ◽  
Vol 5 (6) ◽  
pp. 1169-1175 ◽  
Author(s):  
A. D. Berry ◽  
R. T. Holm ◽  
M. Fatemi ◽  
D. K. Gaskill

Films containing the metals copper, yttrium, calcium, strontium, barium, and bismuth were grown by organometallic chemical vapor deposition (OMCVD). Depositions were carried out at atmospheric pressure in an oxygen-rich environment using metal beta-diketonates and triphenylbismuth. The films were characterized by Auger electron spectroscopy, Nomarski and scanning electron microscopy, and x-ray diffraction. The results show that films containing yttrium consisted of Y2O3 with a small amount of carbidic carbon, those with copper and bismuth were mixtures of oxides with no detectable carbon, and those with calcium, strontium, and barium contained carbonates. Use of a partially fluorinated barium beta-diketonate gave films of BaF2 with small amounts of BaCO3.


2014 ◽  
Vol 979 ◽  
pp. 184-187
Author(s):  
Weerachon Phoohinkong ◽  
Thitinat Sukonket ◽  
Udomsak Kitthawee

Zinc sulfide (ZnS) nanostructures are important materials for many technologies such as sensors, infrared windows, transistors, LED displays, and solar cells. However, many methods of synthesizing ZnS nanostructures are complex and require expensive equipment. In this study, a liquid-solid chemical reaction without surfactant was used to synthesize ZnS at room temperature. In addition, commercial grade zinc oxide (ZnO) particles were used as a precursor. The effect of the addition of acids and inorganic salts were investigated. The products were characterized by field emission scanning electron microscopy (FESEM) coupled with energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The results show that the nanoparticles of ZnS were obtained in hydrochloric acid and acetic acid addition. The diameters were in the range of 10 to 20 nm and 50 to 100 nm, respectively. In the case of a sodium chloride salt addition, a ZnS structure was obtained with a particle size of approximately 5 nm and a flake-like morphology.


FLUIDA ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 81-92
Author(s):  
Ade Yanti Nurfaidah ◽  
Dheana Putri Lestari ◽  
Rheisya Talitha Azzahra ◽  
Dian Ratna Suminar

Abstrak Nikel merupakan unsur logam yang penggunaannya sudah dikenal dalam industri, terutama pada pelapisan logam dan paduan. Pengolahan nikel dari bijih nikel laterit (jenis Limonit) menggunakan proses hidrometalurgi Atmospheric Pressure Acid Leaching (APAL) yang dinilai lebih ekonomis karena pemakaian energi dan biaya operasional cukup rendah. Media pelarut yang digunakan berupa larutan asam sulfat (H2SO4). Sebelum dilakukan pengolahan, karakterisasi bijih dilakukan menggunakan X-Ray Diffraction (XRD), X-Ray Flourscence (XRF), dan Scanning Electron Microscopy (SEM). Metode penelitian yang dilakukan yaitu literature review. Hasil review dari beberapa artikel jurnal menunjukkan bahwa kadar nikel yang terkandung pada suatu bijih sekitar 1,42%, 2,94 dan 0,95% serta sisanya adalah pengotor. Kondisi operasi yang tepat akan menghasilkan pemurnian nikel yang cukup tinggi. Parameter kondisi operasi yang dapat memengaruhi proses pemisahan nikel diantaranya suhu operasi yang ditunjukan dengan semakin meningkatnya % ekstraksi nikel seiring dengan kenaikan suhu. Selain suhu operasi, konsentrasi pelarut juga salah satu parameter yang mempengaruhi % ekstraksi karena semakin tinggi ion H+ akan memudahkan proses pelarutan sehingga akan mengikat Nikel Oksida yang terdapat pada bijih. Suhu paling optimal untuk menghasilkan nikel dengan kemurnian tinggi dalam operasi pelindian atmosferik adalah 90°C dan konsentrasi asam sulfat 5 M.  Kata Kunci: Nikel, pelindian, suhu, konsentrasi   Abstract  Nickel is a metal element whose use is well known in industry, especially in metal and alloy plating. The processing of nickel from laterite nickel ore (Limonite type) uses a hydrometallurgical process of Atmospheric Pressure Acid Leaching (APAL) which is considered more economical because energy consumption and operational costs are quite low. The solvent medium used is a solution of sulfuric acid (H2SO4). Prior to processing, ore characterization was carried out using X-Ray Diffraction (XRD), X-Ray Flourscence (XRF), and Scanning Electron Microscopy (SEM). The research method literature review article. The results of reviews from several journal articles show that the nickel content contained in an ore is around 1.42%, 2.94% and 0.95% and the rest is impurity. The right operating conditions will result in relatively high nickel refining. The operating condition parameters that can affect the nickel separation process include the operating temperature which is indicated by the increasing % nickel extraction along with the increase in temperature. In addition to operating temperature, solvent concentration is also one of the parameters that affects the% extraction because the higher the H+ ion will facilitate the dissolving process so that it will bind to the Nickel Oxide contained in the ore. The optimal temperature to produce high-purity nickel in atmospheric leaching operations is 90°C and a sulfuric acid concentration of 5 M. Keywords: Nickel, leaching, temperature, concentration


1997 ◽  
Vol 3 (S2) ◽  
pp. 1193-1194
Author(s):  
Brendan J. Griffin

Most scanning electron microscopy is performed at low magnification; applications utilising the large depth of field nature of the SEM image rather than the high resolution aspect. Some environmental SEMs have a particular limitation in that the field of view is restricted by a pressure limiting aperture (PLA) at the beam entry point of the specimen chamber. With the original ElectroScan design, the E-3 model ESEM utilised a 500 urn aperture which gave a very limited field of view (∼550um diameter at a 10mm working distance [WD]). An increase of aperture size to ∼lmm provided an improved but still unsatisfactory field of view. The simplest option to increase the field of view in an ESEM was noted to be a movement of the pressure and field, limiting aperture back towards the scan coils1. This approach increased the field of view to ∼2mm, at a 10mm WD. A commercial low magnification device extended this concept and indicated the attainment of conventional fields of view.


2013 ◽  
Vol 334-335 ◽  
pp. 60-64 ◽  
Author(s):  
Mohammad Reza Loghman-Estark ◽  
Reza Shoja Razavi ◽  
Hossein Edris

Scandia, yttria doped zirconia ((ZrO2)0.96(REO1.5)0.04(RE=Sc3+, Y3+)) nanoparticles were prepared by the modified sol-gel method. The microstructure of the products was characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Thermal stabillity of SYSZ nanocrystals were also investigated. The SYSZ nanocrystals synthesized with EGM:Zr+4mole ratio 4:1, calcined at 700°C, have average diameter of ~20 nm.


2009 ◽  
Vol 1228 ◽  
Author(s):  
Masataka Hakamada ◽  
Yasumasa Chino ◽  
Mamoru Mabuchi

AbstractMetallic nanoporous architecture can be spontaneously attained by dealloying of a binary alloy. The nanoporous architecture can be often fabricated in noble metals such as Au and Pt. In this study, nanoporous Ni, Ni-Cu are fabricated by dealloying rolled Ni-Mn and Cu-Ni-Mn alloys, respectively. Unlike conventional Raney nickel composed of brittle Ni-Al or Cu-Al intermetallic compounds, the initial alloys had good workability probably because of their fcc crystal structures. After the electrolysis of the alloys in (NH4)2SO4 aqueous solution, nanoporous architectures of Ni and Ni-Cu with pore and ligament sizes of 10–20 nm were confirmed by scanning electron microscopy and transmission electron microscopy. X-ray diffraction analyses suggested that Ni and Cu atoms form a homogeneous solid solution in the Ni-Cu nanoporous architecture. The ligament sizes of nanoporous Ni and Ni-Cu were smaller than that of nanoporous Cu, reflecting the difference between diffusivities of Ni and Cu at solid/electrolyte interface. Ni can reduce the pore and ligament sizes of resulting nanoporous architecture when added to initial Cu-Mn alloys.


2011 ◽  
Vol 364 ◽  
pp. 500-503 ◽  
Author(s):  
S. J. Kasim ◽  
F. H. Khaleel ◽  
F. A. Kasim ◽  
M.A. Mahdi

Ag2S nanorods and nonoparticles have been successfully prepared using chemical method. Silver nitrate with molar concentration of 0.1 M and thiourea with different molar concentration were used as a source of Ag++and S++ions, respectively. The pH of solution was in range of 10-11. Scanning electron microscopy (SEM) image showed that the nanorods length and diameter were 2.5-3 μm and 300-400 nm, respectively. X-ray diffraction results showed a monoclinic α-Ag2S phase was obtained. The atomic ratio of silver and sulphur were found using energy dispersive spectroscopy (EDS) and it was 62.39% and 37.61%, respectively.


2019 ◽  
Vol 32 (4) ◽  
pp. 418-428 ◽  
Author(s):  
Maryam Rasekh ◽  
Zahra Rafiee

Polyimide (PI)/Fe3O4 nanocomposites were successfully prepared via the thermal curing of different amounts of Fe3O4 nanoparticles (2, 4, 6 and 8 wt%) functionalized by 3-aminopropyltriethoxy silane as a coupling agent, containing the poly(amic acid) derived from 5-diamino- N-(4-(4,5-diphenyl-1H-imidazol)phenyl)benzamide and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride. The effect of Fe3O4 nanoparticles on the structural, thermal and magnetic properties of nanocomposites was investigated. The Fourier transform infrared spectroscopy and scanning electron microscopy (SEM) results reveal that the surface of Fe3O4 nanoparticles is sufficiently compatible with PI through linkage of the coupling agent between Fe3O4 and the polymer. Also, the SEM image shows that Fe3O4 nanoparticles are dispersed uniformly in the polymer matrix, with a particle size of around 78 nm. The nanocomposites of 2 and 8 wt% exhibit the saturation magnetization values of 0.055 and 0.170 emu g− 1, respectively. The thermogravimetric analysis data show that the thermal stability of the nanocomposites is improved as compared to the pure PI.


2020 ◽  
pp. 16-23
Author(s):  
QI DAOZHENG ◽  
GU CONG ◽  
FU JIAJIA ◽  
WANG YAO

The clay-sand mixtures with diferent partcle sizes were prepared to investgate partcle and pore characteristcs. The microstructure characteristcs of the sand-clay mixtures were studied by the Mercury Intrusion Porosimetry (MIP) test and Scanning Electron Microscopy (SEM). Image-Pro Plus (IPP) image processing sofware was used to quantfy SEM images which investgated the micro-mechanism of structural evoluton of mixtures under diferent gradatons. The research results indicate that the units of mixtures develop from platelets and honeycomb to agglomerated and granular with the increase of sand content. The contact between partcles transits from face-face contacts to edge-face and pointface contacts. This artcle evaluated the fractal characteristc of partcle and pore structure based on the fractal theory. With the increase Circularity of the partcles, the ordered arrangement of the partcles in the mixed soil is further reduced. In general, the distributon of pores changes from intergranular pores to pores in aggregate, which provides a theoretcal basis for further study on the micro-macro correlaton of mixtures.


Sign in / Sign up

Export Citation Format

Share Document