Assessment of the Influence of Multiple Cyclic Loading on the Static Modulus of Elasticity of Hardened Concrete

2017 ◽  
Vol 259 ◽  
pp. 21-24
Author(s):  
Petr Misák ◽  
Petr Daněk ◽  
Dalibor Kocáb ◽  
Michaela Potočková ◽  
Bronislava Moravcová ◽  
...  

This paper deals with determining the dependence of the value of the static modulus of elasticity of concrete in compression on the number of loading cycles. The deformation of specimens during multiple cyclic loading was measured in the elastic region of the stress-strain curve for concrete. The specimens were subjected to up to 1500 loading cycles. The main goal of the experiment was to ascertain whether the multiple cyclic loading causes significant changes in the static modulus of elasticity.

2018 ◽  
Vol 272 ◽  
pp. 214-219
Author(s):  
Petr Misák ◽  
Tomáš Vymazal ◽  
Dalibor Kocáb ◽  
Barbara Kucharczyková

In recent years, the static modulus of elasticity is one of the most discussed property of hardened concrete. The aim of this article is to show results of 6 performed experiments focused on test results precision. The measurements were made according to the standards ISO 6784 and ISO 1920-10. More than 20 participants (laboratories) from Europe took part in these experiments. Test results were compared using the statistical methods for interlaboratory comparison. Repeatability and reproducibility, which provide more detailed information about range of expected values of elastic modulus, are the most discussed characteristics in the article.


2021 ◽  
Vol 25 (01) ◽  
pp. 100-108
Author(s):  
Samer S. Abdulhussein ◽  
◽  
Ashraf A. Alfeehan ◽  

Currently, the industry of construction requires finding efficient materials to increase the durability and strength as well as decreasing the concrete structure’s total weight. Therefore, an effort was made in this study for examining the impact of adding waste materials such as the iron lathing waste fibers. Iron lathe wastes have been deformed into twisted strips with a width of (4mm) and sieving size of (4.75-10) mm. The experimental investigation has been achieved with the use of four mixes related to light-weight concretes, involving different volumetric ratios of the iron lathing waste fibers as (0%, 1 %, 1.5 %, and 2 %). With the increase in the volume fraction of the lathing waste fibers from 0% to 2%, the results showed that there were a significant increase and improvement in compressive strength, splitting tensile strength, flexural tensile strength, static modulus of elasticity, and dynamic modulus of elasticity by 12%, 67.5%, 134%, 27%, and 26% respectively. This indicates that the iron waste fibers have an important impact in enhancing the mechanical properties of the hardened concrete through the structural change in the concrete matrix.


2019 ◽  
Vol 292 ◽  
pp. 45-49
Author(s):  
Petr Misák ◽  
Dalibor Kocáb ◽  
Martin Alexa ◽  
Barbara Kucharczyková ◽  
Petr Daněk ◽  
...  

The paper deals with results of the experiment when ordinary and lightweight concrete was subjected to cyclic loading. Each test specimen was loaded with the force equivalent to one third of the expected compressive strength value similarly to the static modulus of elasticity test with the difference that the total number of loading cycles was nearly 4500. Dynamic modulus of elasticity and compressive strength was measured before and after cyclic loading. The result of this experiment is statistical analysis of the test results and assessment of the influence of multiple cyclic loading.


1973 ◽  
Vol 16 (98) ◽  
pp. 1117-1125 ◽  
Author(s):  
Yoshio OHASHI ◽  
Koichiro KAWASHIMA ◽  
Sadao MIZUNO

1957 ◽  
Vol 30 (1) ◽  
pp. 218-241 ◽  
Author(s):  
A. R. Payne

Abstract The first two sections of this paper deal with the necessity for amending the classical Newtonian equations by assuming a nonlinear stress-strain curve in order to account for the presence of a considerable amount of second harmonic of the test frequency in the restoring forces in a rubber, in both forced-vibration and positive-displacement dynamic testers. The nonlinear stress-strain curve is applied also to a damped free-vibration curve of the Yerzley type, and is shown to account for the asymmetry of the envelope of the vibration curve. The latter part of the paper obtains a relationship between the dynamic modulus of loaded rubbers and amplitude of vibration, leading to equations analogous to those used in rheology to deal with rate of shear effects in non-Newtonian liquids, and to explain the effects of fillers on the static modulus and hardness of vulcanized rubbers. A resonance curve from a resonant vibrator is analyzed and the variation of modulus with amplitude is shown to exhibit the typical thixotropic effect associated with loaded rubbers subjected to vibrations. The last section discusses how the decrease of modulus with increasing amplitude can be attributed to two different mechanisms: (1) thixotropic breakdown of filler structure, (2) in compression, nonlinearity of the stress-strain curve.


2015 ◽  
Vol 824 ◽  
pp. 151-154
Author(s):  
Pavel Reiterman

Present paper deals with the experimental investigation of static modulus of elasticity of hardened concrete and its relation to compressive strength of concrete. Based on the number of measurement was derived expression of dependence of modulus of elasticity on compressive strength of concrete which was determined using cubic specimens; modulus of elasticity was measured using prismatic specimens of dimensions 100x100x400 mm. Studied concrete mixtures present commonly used concrete of all established strength classes.


1930 ◽  
Vol 3 (2) ◽  
pp. 304-314 ◽  
Author(s):  
Roscoe H. Gerke

Abstract The first and second laws of thermodynamics are applied to the stretching of vulcanized gum rubber stocks. Equilibrium stress-strain curves without appreciable hysteresis are described. The modulus of elasticity of vulcanized rubber for higher elongations obtained from the equilibrium stress-strain curve is capable of giving agreement with predictions of the second law of thermodynamics and the Joule heat effect. The modulus of elasticity from the equilibrium stress-strain curve is practically independent of the time of cure for a range of cures for elongations less than 600 per cent. The customary stress-strain curves show the rubber to be stiffer with increased cure. These facts are additional evidence that the important effect caused by vulcanization is a greater resistance to plastic flow or permanent set.


1981 ◽  
Vol 54 (4) ◽  
pp. 857-870 ◽  
Author(s):  
E. A. Meinecke ◽  
S. Maksin

Abstract The influence of carbon black loading on the dynamic properties of statically deformed elastomers has been investigated. The energy loss per cycle was found to increase according to the square of the strain amplification factor as expressed by the Guth-Gold-Einstein equation. The dynamic complex modulus |E*| is approximately equal to the static modulus obtained from the slope of the static stress-strain curve. The influence of carbon black loading on E* can, therefore, be predicted from its influence on the static stress-strain curve which was found to be governed by the first power of the strain amplification factor. The tangent of the loss angle can thus be predicted from |E*| and the energy loss per cycle. It does not only depend upon the dynamic viscosity of the material; it also depends upon the shape of the stress-strain curve as well.


2020 ◽  
Vol 838 ◽  
pp. 10-22
Author(s):  
Pavel Martauz ◽  
Vojtěch Václavík ◽  
Branislav Cvopa

This article presents the results of research on the use of unstable steel slag with a fraction of 0/8 mm as a 100% substitute for natural aggregate in concrete production. Two types of cements were used for the production of concrete: Portland cement CEM I 42.5N and hybrid cement H-CEMENT. Both of these cements were produced by the company Považská cementárna, a.s., Ladce. The main objective of this study was to assess the suitable type of binder to be combined with unstable steel slag in the production of concrete composite. The prepared concrete was used to test the properties of a fresh concrete mix, i.e. its consistency and bulk density. Hardened concrete was used to test the strength and deformation properties, including cube strength after 3, 7, 14, 21, 28 and 90 days, as well as prism strength after 28 days. The static modulus of elasticity was determined using prisms after 28 days of age of the test specimens. Our attention was also focused on determining the class of leachability of the concretes based on steel slag with CEM I 42.5N and H-CEMENT. The durability of concrete prepared on the basis of steel slag was tested in an environment with increased temperature and pressure. The results of the strength characteristics tests show a difference between the 28-day average cube strength of concrete using CEM I 42.5N and H-CEMENT (34.6 MPa and 29.1 MPa), while after 90 days, the average cube strength value stabilized at about 38 MPa. The average values ​​of the static modulus of elasticity when using CEM I 42.5N and H-CEMENT are almost identical, achieving values ​​of 32.5 GPa and 32.8 GPa, respectively. Concrete based on steel slag with CEM I 42.5N and H-CEMENT can be included in leachability class IIb. The results of the durability test of concrete based on steel slag in an environment with increased temperature and pressure confirmed the use of H-CEMENT hybrid cement from the company Považská cementáren, a.s., Ladce, as a suitable binder. .


1970 ◽  
Vol 7 (1) ◽  
pp. 99-110
Author(s):  
Prajwal Lal Pradhan ◽  
C.V. R. Murty ◽  
Karl Vincent Hoiseth ◽  
Mohan Prasad Aryal

This paper puts forward an idealization of stress-strain curve of structural materials like bricks, and mortar. In this model, below yield limit, the pattern of the stress-strain relationship is assumed to be linear i.e. modulus of elasticity remains unchanged, whereas beyond the limit, the relationship is supposed to be curvilinear. A quadratic stress function is assumed to formulate the stress-strain curve passing through the points of yield stress sy and ultimate stress su. Experimental investigation on the cube-tests of specimen for brick samples and mortar cubes are also presented for the verification of idealized stress-strain relationships.Journal of the Institute of Engineering, Vol. 7, No. 1, July, 2009 pp. 99-110doi: 10.3126/jie.v7i1.2067


Sign in / Sign up

Export Citation Format

Share Document