Analysis of Surface Texture of High Aspect Ratio Blind Micro Holes on Titanium Alloy (Ti-6Al-4V) in Micro Electrical Discharge Drilling

2017 ◽  
Vol 261 ◽  
pp. 151-158 ◽  
Author(s):  
Swapan Barman ◽  
Asit Baran Puri ◽  
Nagahanumaiah

Efficiency of any machining process depends on the effectiveness of final outcomes. Surface integrity plays an important role in functional performance of a part or component. Traditionally, surface roughness is considered to be the principal parameter to assess the surface integrity of a machined surface. In this paper, the influences of machining parameters like gap voltage, capacitance and depth of hole on the surface finish parameters like Ra and Sa of micro holes have been studied in micro electrical discharge drilling. The high aspect ratio blind micro holes were drilled on titanium alloy (Ti-6Al-4V) with cylindrical tungsten tool electrodes. The experimentation was carried out adopting a full factorial design (33). The simultaneous effects of machining parameters on responses were analysed using response surface methodology. Multiple linear regression models were developed for responses to obtain the correlation between machining parameters and machining outputs. Multi-objective optimization has been performed with the aid of the desirability function approach.

Author(s):  
Vikas Gohil ◽  
Yogesh M Puri

Electrical discharge turning is a unique form of electrical discharge machining process, which is being especially developed to generate cylindrical forms and helical profiles on the difficult-to-machine materials at both macro and micro levels. A precise submerged rotating spindle as a work holding system was designed and added to a conventional electrical discharge machine to rotate the workpiece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating workpiece; thus, mirror image of the tool is formed on the circumference of the workpiece. The machining performance of electrical discharge turning process is defined and influenced by its machining parameters, which directly affects the quality of the machined component. This study presents an investigation on the effects of the machining parameters, namely, pulse-on time, peak current, gap voltage, spindle speed and flushing pressure, on the material removal rate (MRR) and surface roughness (Ra) in electrical discharge turning of titanium alloy Ti-6Al-4V. This has been done by means of Taguchi’s design of experiment technique. Analysis of variance as well as regression analysis is performed on the experimental data. The signal-to-noise ratio analysis is employed to find the optimal condition. The experimental results indicate that peak current, gap voltage and pulse-on time are the most significant influencing parameters that contribute more than 90% to material removal rate. In the context of Ra, peak current and pulse-on time come up with more than 82% of contribution. Finally, the obtained predicted optimal results were verified experimentally. It was shown that the error values are all less than 6%, confirming the feasibility and effectiveness of the adopted approach.


Author(s):  
Mohammad S Mahdieh

Ultra-fine grained materials with high strength and low weight are eventually considered to be used in industries. To produce ultra-fine grained materials, equal channel angular pressing is a functional method, imposing severe plastic deformation on the workpiece. Electrical discharge machining is an indispensable process in manufacturing industrial parts with high accuracy and precision. However, electrical discharge machining has thermo-physical consequences, damaging the surface layers of the workpiece. On the other hand, the ultra-fine grained materials are thermodynamically unstable and tend to microstructural evolution. Thus, electrical discharge machining process affects the ultra-fine grained materials more than coarse grain materials. In this study, the effects of electrical discharge machining on the ultra-fine grained steel were investigated and the undesirable influences of the electrical discharge machining were diminished by adjusting the electrical discharge machining parameters. The ultra-fine grained steel samples were electrical discharge machined in two methods including Iso-pulse (roughing mode and finishing mode) and with resistance–capacitance-type generator. The surface integrity parameters, including thickness and microstructure of the recast layer and heat-affected zone, the cracks density and hardness, which for all three types of samples, were investigated by scanning electron microscopy, optical microscopy, X-ray diffraction technique, and micro-hardness tester. The results show that electrical discharge machining with resistance–capacitance-type generator has the minimum effects on the surface integrity of the ultra-fine grained samples because of the different material removal mechanism of resistance–capacitance-type electrical discharge machining.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1476 ◽  
Author(s):  
Magdalena Machno ◽  
Rafał Bogucki ◽  
Maciej Szkoda ◽  
Wojciech Bizoń

Nickel-based superalloys are being increasingly applied to manufacture components in the aviation industry. The materials are classified as difficult-to-machine using conventional methods. Nowadays, manufacturing techniques are needed to drill high aspect ratio holes of above 20:1 (depth-to-diameter ratio) in these materials. One of the most effective methods of making high-aspect-ratio holes is electrical discharge drilling (EDD). While drilling high aspect ratio holes, a crucial issue is the flushing of the gap area and the evacuation of the erosion products. The use of deionized water as the dielectric fluid in the EDD offers a considerable potential. This paper includes an analysis of the influence of the machining parameters (pulse time, current amplitude and discharge voltage) on the process performance (drilling speed, linear tool wear, taper angle, hole’s aspect ratio, side gap thickness), during the EDD with the use of deionized water in the Inconel 718 alloy. The obtained through holes were subjected to the extended analysis. The impact of the initial working fluid temperature and pressure on the conditions of the flow through the electrode channel was also subjected to the analysis. The deionized water properties were changed by applying an initial temperature. Based on the results of an analysis of the previous research, the EDD of the through holes was performed for a pre-set initial temperature (~313.15 °K) and initial pressure of the working fluid (8 MPa) and selected process parameters. An analysis of the results indicates increasing of hole’s aspect ratio by about 15% (above 30), decreasing the side gap thickness by about 40% and enhanced surface integrity.


Author(s):  
Cibi Makudapathy ◽  
Murali Sundaram

Abstract Micromachining of Carbon Fiber Reinforced Plastics (CFRPs) is essential for numerous applications in several industries such as aerospace, automotive, defense, shipping, sporting goods, and biomedical industries. The major challenge in machining CFRP by electrical discharge machining (EDM) is due to the non-conductivity of epoxy material which is used as a binder for manufacturing these CRFPs. This study attempts a novel, yet simple approach to ensure the conductivity of the work piece through the entire machining process. Experiments were carried out in this work to assess the feasibility of machining high aspect ratio micro-holes in CFRP by micro EDM. The effect of process parameters such as voltage and feed-rate on the hole quality was studied. Using optimal process conditions, micro hole of 2500 µm deep with an aspect ratio of over 11 was achieved.


Author(s):  
Chong Liu ◽  
Asif Rashid ◽  
Muhammad P. Jahan ◽  
Jianfeng Ma

Abstract Titanium alloy Ti-6Al-4V is used extensively in aerospace engines because of its high strength-to-weight ratio and corrosion resistance. Machining of cooling holes in turbine blades for aerospace engines is one of the major challenges faced in aerospace industries. Ti-6Al-4V is known as a difficult to be machined material by conventional machining processes, and machining of micro-through-holes with diameter less than 100 microns is even more challenging. Therefore, the objective of this study is to investigate the feasibility of machining high aspect ratio micro-through holes in Ti-6Al-4V using micro electrical discharge machining (micro-EDM) with the silver (Ag) nanopowder mixed dielectric. The machining time, overcut, recast layer, crater size, aspect ratio and surface finish of the micro-holes were evaluated. In order to minimize the positional inaccuracy and spindle runout, the microelectrodes were fabricated in-situ using block micro-EDM process. In this study, as received electrode of 300 microns diameter tungsten wire was reduced to about 50 microns diameter rod by micro block EDM using a tungsten carbide block. The effect of powder concentration, gap voltage, capacitance and electrode rotational speed was studied. It is found that high quality micro-holes of about 50 microns diameter can be achieved successfully and repeatedly using powder mixed micro-EDM (PM-μEDM). The micro-holes generated by PM-μEDM provides comparatively smoother surface finish and minimal recast layer around the rim of the micro-holes. In addition, PM-μEDM process improves machining stability, thus allowing to minimize the hole size and quality, thus enhancing the aspect ratio of micro-holes.


2015 ◽  
Vol 76 (6) ◽  
Author(s):  
J.B. Saedon ◽  
Norkamal Jaafar ◽  
Nor Hafiez Mohamad Nor ◽  
Mohd Azman Yahaya ◽  
Hazran Husain

This paper presents an investigation on influences and multiple optimizations of wire-electrical discharge (WEDM) machining performances such as cutting rate, material removal, surface roughness and kerf width processed on titanium alloy material. The experimental studies were conducted under varying machining parameters namely pulse-off time, peak current, wire tension and wire feed. The experimental works were designed base on Taguchi design of experiment. The optimum multi-objective performance characteristics was determined using analysis of variance (ANOVA) coupled with grey relational analysis (GRA). ANOVA was used to study the significance of process parameters on grey relational grade which showed the most significant factor. The grey relational grade obtained from GRA was used to optimize the wire-electrical discharge machining process. To validate the findings, confirmation experiment had been carried out using the optimal parameters and the predicted results were found in good agreements with experimental finding. Improved machining performance in the wire electrical machining process has been achieved by using this approach.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 125
Author(s):  
Yan Chen ◽  
Xu Feng ◽  
Gongming Xin

With the rapid development of micro-electro-mechanical systems (MEMSs), the demand for glass microstructure is increasing. For the purpose of achieving high quality and stable machining of glass microstructures with a high aspect ratio, ultrasonic vibration is applied into the micro-wire electrochemical discharge machining (WECDM), which is proposed as ultrasonic vibration-assisted WECDM with a micro helical electrode. Firstly, the formation of a gas film on the surface of the helical electrode in WECDM machining is simulated, meaning the thickness of the gas film can be reduced by adding suitable ultrasonic amplitude, thus reducing the critical voltage, then the machining localization and stability were enhanced. Then, the micro helical electrode with a diameter of 100 μm is used to carry out sets of experiments that study the influence of ultrasonic amplitude, machining voltage, duty factor, pulse frequency, and feed rate on the slit width. The experimental results show that the machining stability and quality are significantly improved by adding suitable ultrasonic amplitude. When the amplitude was 5.25 μm, the average slit width was reduced to 128.63 μm with a decrease of 20.78%. Finally, with the optimized machining parameters, micro planar coil structure and microcantilever structure with a high aspect ratio were fabricated successfully on the glass plate. It is proved that ultrasonic vibration-assisted WECDM with the micro helical electrode method can meet the requirements of high aspect ratio microstructure machining for hard and brittle materials.


Author(s):  
Rajkeerthi E ◽  
Hariharan P

Abstract Surface integrity of micro components is a major concern particularly in manufacturing industries as most geometry of the products must meet out necessary surface quality requirements. Advanced machining process like electrochemical micro machining possess the capabilities to machine micro parts with best surface properties exempting them from secondary operations. In this research work, different electrolytes have been employed for producing micro holes in A286 super alloy material to achieve the best surface quality and the measurement of surface roughness and surface integrity to evaluate the machined surface is carried out. The machined micro hole provides detailed information on the geometrical features. A study of parametric analysis meant for controlling surface roughness and improvement of surface integrity has been made to find out the suitable parameters for machining. The suitability of various electrolytes with their dissolution mechanism and the influence of various electrolytes have been thoroughly studied. Among the utilized electrolytes, EG + NaNO3 electrolyte provided the best results in terms of overcut and average surface roughness.


Author(s):  
Anshuman Kumar Sahu ◽  
Joji Thomas ◽  
Siba Sankar Mahapatra

Electrical discharge machining (EDM) is a thermo-electrical process that can be conveniently utilized for generating complex shaped profiles on hard-to-machine conductive materials using metallic tool electrodes. In this work, composite tools made of copper-tungsten-boron carbide (Cu-W-B4C) manufactured by powder metallurgy (PM) route are used during machining of titanium alloy (Ti6Al4V). The effect of four input machining parameters viz. current, pulse-on-time, duty cycle and percentage of tungsten and boron carbide on material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) is studied. A novel meta-heuristic approach such as simple optimization (SOPT) algorithm has been used for single and multi-objective optimization. The pareto-optimal solutions obtained by SOPT have been ranked by VIKOR method to find out the best suitable optimal solution. Analysis of experimental data suggests vital information for controlling the machining parameters to improve the machining performance.


2018 ◽  
Vol 779 ◽  
pp. 149-152 ◽  
Author(s):  
Ashwin Polishetty ◽  
Basil Raju ◽  
Guy Littlefair

Titanium alloy, Ti-6Al-4V is a popular alloy used in wide range of design applications mostly in aerospace and biomedical industry due to its advantageous material properties. This research is based on threading operation in a cylindrical workpiece of Ti-6Al-4V additive manufactured by Selective Laser Melting (SLM) technique. Secondary machining is described as the operations that are performed on the workpiece after a primary machining in order to achieve a required finish and form. Common secondary operations after drilling includes threading, reaming and knurling. Threading is a significant machining process in almost all applications of Titanium alloys. The development of an efficient threading process for Titanium alloys and enhancing existing methods may lead to a wider application of additive manufactured Titanium alloys. The aim of this research is to find out favorable threading conditions for Titanium alloy Ti-6Al-4V to obtain better machinability. Threads are tapped into the workpiece using variable machining parameters such as spindle speed and depth of cut. Statistical data are collected and analyzed by qualitative and quantitative evaluation of the threads. The outputs under consideration to evaluate efficiency of the secondary machining include surface texture (roughness (Ra)), dimensional accuracy (thread geometry) and power required (cutting force).


Sign in / Sign up

Export Citation Format

Share Document