Mineralogical Dynamics of Primary Copper Sulfides Mediated by Acidophilic Biofilm Formation

2017 ◽  
Vol 262 ◽  
pp. 325-329 ◽  
Author(s):  
Roberto A. Bobadilla-Fazzini

Bioleaching of copper sulfides is catalyzed by iron-and sulfur-oxidizing acidophilic microorganisms attached to the mineral surface forming a biofilm. However, the link between copper sulfides bioleaching and biofilm formation is not yet fully understood. Understanding the factors that are limiting the bioleaching kinetics for different copper sulfide minerals through exhaustive mineralogical analysis of the mineral surface with concomitant biofilm formation during the leaching process will deliver new process conditions with enhanced kinetics and higher copper recovery. In this work we have developed and standardized a reproducible flow cell method able to mimic heap/dump bioleaching laminar flow conditions to study the mineralogical dynamics by advanced mineralogical analysis including QEMSCAN and SEM-EDS coupled to biofilm formation analysis. Based on this method, the bioleaching mineralogical dynamics of primary copper sulfides (enargite (Cu3AsS4), chalcopyrite (CuFeS2) and bornite (Cu5FeS4)) have been determined in the presence of biofilm formation. Supported by the observed mineralogical dynamics, different mechanisms of dissolution for bioleaching were observed as well as selective biofilm formation over the mineral surface, showing enhanced conditions for copper recovery.

2015 ◽  
Vol 1130 ◽  
pp. 131-135
Author(s):  
Roberto A. Bobadilla-Fazzini ◽  
Patricia Piña ◽  
Veronica Gautier ◽  
Karen Brunel ◽  
Pilar Parada

Bioleaching involves a chemical-microbial-driven dynamic process of oxidation and dissolution, as well as precipitation and formation of surface secondary phases that change the copper sulfide exposure/occlusion profiles. This dynamic process determines the kinetics of copper sulfides bioleaching. Former studies have shown the microbiological dynamics of the leaching solutions, and most mineralogical studies have been done with pure copper sulfide species under controlled conditions. In this work we aim to unravel the link between the microbiology and the mineralogy during the bioleaching of a mainly primary copper sulfide ore through the determination of the surface microbial and mineralogical variations in time applying process conditions. The results showed that the microbial dynamics in the leaching solutions is not representative of the bioleaching process since it differs significantly from the one established at the ore surface. Moreover, a major and fast alteration of the primary copper sulfide minerals chalcopyrite (CuFeS2) and bornite (Cu5FeS4) was observed, having as the major bioleaching intermediate the formation of covellite (CuS). When the ore was subjected to a mesophilic inoculation, the microbial dynamics was modified, significantly changing the mineralogical dynamics of these primary sulfides and enhancing the overall kinetics of copper recovery.


2021 ◽  
Vol 12 ◽  
Author(s):  
Roberto A. Bobadilla-Fazzini ◽  
Ignacio Poblete-Castro

Biofilm formation within the process of bioleaching of copper sulfides is a relevant aspect of iron- and sulfur-oxidizing acidophilic microorganisms as it represents their lifestyle in the actual heap/dump mining industry. Here, we used biofilm flow cell chambers to establish laminar regimes and compare them with turbulent conditions to evaluate biofilm formation and mineralogic dynamics through QEMSCAN and SEM-EDS during bioleaching of primary copper sulfide minerals at 30°C. We found that laminar regimes triggered the buildup of biofilm using Leptospirillum spp. and Acidithiobacillus thiooxidans (inoculation ratio 3:1) at a cell concentration of 106 cells/g mineral on bornite (Cu5FeS4) but not for chalcopyrite (CuFeS2). Conversely, biofilm did not occur on any of the tested minerals under turbulent conditions. Inoculating the bacterial community with ferric iron (Fe3+) under shaking conditions resulted in rapid copper recovery from bornite, leaching 40% of the Cu content after 10 days of cultivation. The addition of ferrous iron (Fe2+) instead promoted Cu recovery of 30% at day 48, clearly delaying the leaching process. More efficiently, the biofilm-forming laminar regime almost doubled the leached copper amount (54%) after 32 days. In-depth inspection of the microbiologic dynamics showed that bacteria developing biofilm on the surface of bornite corresponded mainly to At. Thiooxidans, while Leptospirillum spp. were detected in planktonic form, highlighting the role of biofilm buildup as a means for the bioleaching of primary sulfides. We finally propose a mechanism for bornite bioleaching during biofilm formation where sulfur regeneration to sulfuric acid by the sulfur-oxidizing microorganisms is crucial to prevent iron precipitation for efficient copper recovery.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 323
Author(s):  
Olga Ferreira ◽  
Patrícia Rijo ◽  
João Gomes ◽  
Ricardo Santos ◽  
Sílvia Monteiro ◽  
...  

Bio-contamination of water through biofouling, which involves the natural colonization of submerged surfaces by waterborne organisms, is a global socio-economic concern, allied to premature materials bio-corrosion and high human health risks. Most effective strategies release toxic and persistent disinfectant compounds into the aquatic medium, causing environmental problems and leading to more stringent legislation regarding their use. To minimize these side effects, a newly non-biocide-release coating strategy suitable for several polymeric matrices, namely polydimethylsiloxane and polyurethane (PU)-based coatings, was used to generate antimicrobial ceramic filters for water bio-decontamination. The best results, in terms of antimicrobial activity and biocide release, showed an expressed delay and a decrease of up to 66% in the population of methicillin-resistant Staphylococcus aureus bacteria on ceramic filters coated with polyurethane (PU)-based coatings containing grafted Econea biocide, and no evidence of biocide release after being submerged for 45 days in water. Biocidal PU-based surfaces were also less prone to Enterococcus faecalis biofilm formation under flow conditions with an average reduction of 60% after 48 h compared to a pristine PU-based surface. Biocidal coated filters show to be a potential eco-friendly alternative for minimizing the environmental risks associated with biofouling formation in water-based industrial systems.


2020 ◽  
Vol 8 (7) ◽  
pp. 1009
Author(s):  
Camila Safar ◽  
Camila Castro ◽  
Edgardo Donati

Studies of thermophilic microorganisms have shown that they have a considerable biotechnological potential due to their optimum growth and metabolism at high temperatures. Thermophilic archaea have unique characteristics with important biotechnological applications; many of these species could be used in bioleaching processes to recover valuable metals from mineral ores. Particularly, bioleaching at high temperatures using thermoacidophilic microorganisms can greatly improve metal solubilization from refractory mineral species such as chalcopyrite (CuFeS2), one of the most abundant and widespread copper-bearing minerals. Interfacial processes such as early cell adhesion, biofilm development, and the formation of passive layers on the mineral surface play important roles in the initial steps of bioleaching processes. The present work focused on the investigation of different bioleaching conditions using the thermoacidophilic archaeon Acidianus copahuensis DSM 29038 to elucidate which steps are pivotal during the chalcopyrite bioleaching. Fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM) were used to visualize the microorganism–mineral interaction. Results showed that up to 85% of copper recovery from chalcopyrite could be achieved using A. copahuensis. Improvements in these yields are intimately related to an early contact between cells and the mineral surface. On the other hand, surface coverage by inactivated cells as well as precipitates significantly reduced copper recoveries.


2003 ◽  
Vol 185 (18) ◽  
pp. 5632-5638 ◽  
Author(s):  
Konstantin Agladze ◽  
Debra Jackson ◽  
Tony Romeo

ABSTRACT The complex architecture of bacterial biofilms inevitably raises the question of their design. Microstructure of developing Escherichia coli biofilms was analyzed under static and laminar flow conditions. Cell attachment during early biofilm formation exhibited periodic density patterns that persisted during development. Several models for the origination of biofilm microstructure are considered, including an activator-inhibitor or Turing model.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Hervé Straub ◽  
Leo Eberl ◽  
Manfred Zinn ◽  
René M. Rossi ◽  
Katharina Maniura-Weber ◽  
...  

Abstract Background Studying bacterial adhesion and early biofilm development is crucial for understanding the physiology of sessile bacteria and forms the basis for the development of novel antimicrobial biomaterials. Microfluidics technologies can be applied in such studies since they permit dynamic real-time analysis and a more precise control of relevant parameters compared to traditional static and flow chamber assays. In this work, we aimed to establish a microfluidic platform that permits real-time observation of bacterial adhesion and biofilm formation under precisely controlled homogeneous laminar flow conditions. Results Using Escherichia coli as the model bacterial strain, a microfluidic platform was developed to overcome several limitations of conventional microfluidics such as the lack of spatial control over bacterial colonization and allow label-free observation of bacterial proliferation at single-cell resolution. This platform was applied to demonstrate the influence of culture media on bacterial colonization and the consequent eradication of sessile bacteria by antibiotic. As expected, the nutrient-poor medium (modified M9 minimal medium) was found to promote bacterial adhesion and to enable a higher adhesion rate compared to the nutrient-rich medium (tryptic soy broth rich medium ). However, in rich medium the adhered cells colonized the glass surface faster than those in poor medium under otherwise identical conditions. For the first time, this effect was demonstrated to be caused by a higher retention of newly generated bacteria in the rich medium, rather than faster growth especially during the initial adhesion phase. These results also indicate that higher adhesion rate does not necessarily lead to faster biofilm formation. Antibiotic treatment of sessile bacteria with colistin was further monitored by fluorescence microscopy at single-cell resolution, allowing in situ analysis of killing efficacy of antimicrobials. Conclusion The platform established here represents a powerful and versatile tool for studying environmental effects such as medium composition on bacterial adhesion and biofilm formation. Our microfluidic setup shows great potential for the in vitro assessment of new antimicrobials and antifouling agents under flow conditions.


Microbiology ◽  
2009 ◽  
Vol 155 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Christopher D. Doern ◽  
Amity L. Roberts ◽  
Wenzhou Hong ◽  
Jessica Nelson ◽  
Slawomir Lukomski ◽  
...  

Recently, biofilms have become a topic of interest in the study of the human pathogen group A Streptococcus (GAS). In this study, we sought to learn more about the make-up of these structures and gain insight into biofilm regulation. Enzymic studies indicated that biofilm formation by GAS strain MGAS5005 required an extracellular protein and DNA component(s). Previous results indicated that inactivation of the transcriptional regulator Srv in MGAS5005 resulted in a significant decrease in virulence. Here, inactivation of Srv also resulted in a significant decrease in biofilm formation under both static and flow conditions. Given that production of the extracellular cysteine protease SpeB is increased in the srv mutant, we tested the hypothesis that increased levels of active SpeB may be responsible for the reduction in biofilm formation. Western immunoblot analysis indicated that SpeB was absent from MGAS5005 biofilms. Complementation of MGAS5005Δsrv restored the biofilm phenotype and eliminated the overproduction of active SpeB. Inhibition of SpeB with E64 also restored the MGAS5005Δsrv biofilm to wild-type levels.


2016 ◽  
Vol 198 (19) ◽  
pp. 2643-2650 ◽  
Author(s):  
Boo Shan Tseng ◽  
Charlotte D. Majerczyk ◽  
Daniel Passos da Silva ◽  
Josephine R. Chandler ◽  
E. Peter Greenberg ◽  
...  

ABSTRACTMembers of the genusBurkholderiaare known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterizedBurkholderia thailandensisbiofilm development under flow conditions and sought to determine whether QS contributes to this process.B. thailandensisbiofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by “dome” structures filled with biofilm matrix material. We showed that this process was dependent on QS.B. thailandensishas three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the threeB. thailandensisQS systems, we show that QS-1 is required for proper biofilm development, since abtaR1mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. ThebtaR1mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions.IMPORTANCEThe saprophyteBurkholderia thailandensisis a close relative of the pathogenic bacteriumBurkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms,B. thailandensisis an ideal model organism for investigating questions inBurkholderiaphysiology. In this study, we characterizedB. thailandensisbiofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows thatB. thailandensisproduces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience ofB. thailandensisbiofilms against changes in the nutritional environment.


2020 ◽  
Vol 21 (22) ◽  
pp. 8526
Author(s):  
Angela Di Somma ◽  
Federica Recupido ◽  
Arianna Cirillo ◽  
Alessia Romano ◽  
Alessandra Romanelli ◽  
...  

Biofilms consist of a complex microbial community adhering to biotic or abiotic surfaces and enclosed within a protein/polysaccharide self-produced matrix. The formation of this structure represents the most important adaptive mechanism that leads to antibacterial resistance, and therefore, closely connected to pathogenicity. Antimicrobial peptides (AMPs) could represent attractive candidates for the design of new antibiotics because of their specific characteristics. AMPs show a broad activity spectrum, a relative selectivity towards their targets (microbial membranes), the ability to act on both proliferative and quiescent cells, a rapid mechanism of action, and above all, a low propensity for developing resistance. This article investigates the effect at subMIC concentrations of Temporin-L (TL) on biofilm formation in Pseudomonas fluorescens (P. fluorescens) both in static and dynamic conditions, showing that TL displays antibiofilm properties. Biofilm formation in static conditions was analyzed by the Crystal Violet assay. Investigation of biofilms in dynamic conditions was performed in a commercial microfluidic device consisting of a microflow chamber to simulate real flow conditions in the human body. Biofilm morphology was examined using Confocal Laser Scanning Microscopy and quantified via image analysis. The investigation of TL effects on P. fluorescens showed that when subMIC concentrations of this peptide were added during bacterial growth, TL exerted antibiofilm activity, impairing biofilm formation both in static and dynamic conditions. Moreover, TL also affects mature biofilm as confocal microscopy analyses showed that a large portion of preformed biofilm architecture was clearly perturbed by the peptide addition with a significative decrease of all the biofilm surface properties and the overall biomass. Finally, in these conditions, TL did not affect bacterial cells as the live/dead cell ratio remained unchanged without any increase in damaged cells, confirming an actual antibiofilm activity of the peptide.


Microbiology ◽  
2010 ◽  
Vol 156 (9) ◽  
pp. 2670-2681 ◽  
Author(s):  
Amelia D. Tomlinson ◽  
Bronwyn Ramey-Hartung ◽  
Travis W. Day ◽  
Peter M. Merritt ◽  
Clay Fuqua

The ubiquitous plant pathogen Agrobacterium tumefaciens attaches efficiently to plant tissues and abiotic surfaces and can form complex biofilms. A genetic screen for mutants unable to form biofilms on PVC identified disruptions in a homologue of the exoR gene. ExoR is a predicted periplasmic protein, originally identified in Sinorhizobium meliloti, but widely conserved among alphaproteobacteria. Disruptions in the A. tumefaciens exoR gene result in severely compromised attachment to abiotic surfaces under static and flow conditions, and to plant tissues. These mutants are hypermucoid due to elevated production of the exopolysaccharide succinoglycan, via derepression of the exo genes that direct succinoglycan synthesis. In addition, exoR mutants have lost flagellar motility, do not synthesize detectable flagellin and are diminished in flagellar gene expression. The attachment deficiency is, however, complex and not solely attributable to succinoglycan overproduction or motility disruption. A. tumefaciens ExoR can function independently of the ChvG–ChvI two component system, implicated in ExoR-dependent regulation in S. meliloti. Mutations that suppress the exoR motility defect suggest a branched regulatory pathway controlling succinoglycan synthesis, motility and biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document