Utilization of Fe-Oxide Composites for as Removal from Aqueous Solutions

2017 ◽  
Vol 262 ◽  
pp. 630-633
Author(s):  
Alexandra Bekényiová ◽  
Zuzana Danková ◽  
Iveta Štyriaková ◽  
Darina Štyriaková

This work was done to assess the arsenate (AsV ) removal from the model solution by sorbents based on Fe-oxide. Two samples were compared in sorption properties, synthetically prepared Fe-oxide and bentonite/iron oxide (ratio 2:1). The effect of pH and initial metal ion concentration was investigated. The optimum pH for arsenic adsorption by both samples was found to be about 3.0. The adsorption increased very significantly with decreasing pH for both samples. The Fe-oxide sample achieved the maximum adsorption capacity 24,1 mg.g-1 AsV at pH 3, composite sample 14,1 mg.g -1 AsV at pH 3. The adsorption of AsV on Fe-oxide sample increased with the increasing initial metal ion concentration up to 40 mg/l and then equilibrium was established, by contrast of bentonite/Fe-oxide sample shown no significant change at this concentration range.

2020 ◽  
Vol 11 (4) ◽  
pp. 11891-11904

In the present study, batch mode adsorption was carried out to investigate the adsorption capacity of dried bael flowers (Aegle marmelos) for the adsorptive removal of Cu(II) ions from aqueous solutions by varying agitation time, initial metal concentration, the dose of adsorbent, temperature, and initial pH of the Cu(II) ion solution. The percentage removal of 98.7% was observed at 50 ppm initial metal ion concentration, 0.5 g/100.00 cm3 adsorbent dosage, within the contact time of 120 minutes at 30 ºC in the pH range of 4 – 7. The sorption processes of Cu(II) ions was best described by pseudo-second-order kinetics. Langmuir isotherm had a good fit with the experimental data with 0.97 of correlation coefficient (R2), and the maximum adsorption capacity obtained was 23.14 mg g-1 at 30 ºC. The results obtained from sorption thermodynamic studies suggested that the adsorption process is exothermic and spontaneous. SEM analysis showed tubular voids on the adsorbent. FTIR studies indicated the presence of functional groups like hydroxyl, –C-O, –C=O, and amide groups in the adsorbent, which can probably involve in metal ion adsorption. Therefore, dried bael flowers can be considered an effective low-cost adsorbent for treating Cu(II) ions.


2016 ◽  
Vol 74 (7) ◽  
pp. 1644-1657 ◽  
Author(s):  
Mona El-Sayed ◽  
Gh. Eshaq ◽  
A. E. ElMetwally

In our study, Mg–Al–Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg–Al–Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg–Al–Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g−1, and 70.4 mg g−1, respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, qmax, obtained was 113.8 mg g−1, and 79.4 mg g−1 for Co(II), and Ni(II), respectively. Our results showed that Mg–Al–Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.


2014 ◽  
Vol 694 ◽  
pp. 382-386 ◽  
Author(s):  
Bo Liang ◽  
Wan He Zhao ◽  
Kai Huang ◽  
Hong Min Zhu

The removal of Mn (II) ion by saponified garlic peel (S-GP) was investigated using batch adsorption. SEM and FT-IR were employed to investigate the physical and chemical properties of S-GP. The adsorption was evaluated as a function of initial metal ion concentration, contact time and temperature. The maximum adsorption capacity for Mn (II) was 0.51 mol/kg, and the adsorption process followed the Langmuir model. Pseudo-second-order models fitted the experimental data well and kinetic parameters, rate constants, equilibrium sorption capacity and related correlation coefficients at various temperatures were calculated and discussed. A possible adsorption mechanism based on a cation exchange was proposed for the adsorption of Mn (II).


2016 ◽  
Vol 27 (1) ◽  
pp. 59-70
Author(s):  
Nirmala Gnanasundaram ◽  
Aruna Singh ◽  
M Ganesapillai

Purpose – The purpose of this paper is to harness the potential of microwave pre-treatment to prepare carbon from locally available Sterculia foetida fruit shells for adsorption of heavy metals, particularly Nickel ions (Ni++), from effluent. Design/methodology/approach – The pre-treatment methods comprise conventional methods as sun drying and oven drying as well as high intensity microwave drying. Response surface methodology was employed to analyse the optimization of the process. The adsorption behavioural characteristics of the material were established applying adsorption isotherms. Findings – Adsorption of Ni++ was found to be effective in microwave drying at output power of 300 W. It was observed that the maximum adsorption capacity was attained at pH 6; an adsorbent dosage of 0.25 mgml−1 and initial metal ion concentration of 20 ppm with an interactive effect of initial concentration and dosage. Originality/value – The research puts emphasise on prospecting of novel biomass for carbonization and application of the same for effective adsorption. Available literature on Sterculia foetida is very limited and this work will serve to create database on the amenability of processing.


BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 22-33
Author(s):  
Mahnaz Mahdavi ◽  
Mansor B. Ahmad ◽  
Md Jelas Haron ◽  
Mohamad Zaki Ab. Rahman

Cr(III) ions were adsorbed onto polyacrylamide-grafted rubberwood fibre, and effects of aqueous conditions were evaluated. The adsorbent was prepared via graft copolymerization of acrylamide (Am) onto rubberwood fibre (RWF), using ceric ammonium nitrate as an initiator. Fourier transform infrared spectroscopy was used to confirm the formation of PAm-g-RWF. Various variables affecting the adsorption capacity such as the pH of the solution, adsorption time, initial metal ion concentration, and temperature were investigated. The Cr(III) was up to 92% removed by PAm-g-RWF from an initial concentration of 10 mg/L at pH 5.0. Kinetic data fitted very well to a pseudo-second-order rate expression and less well to a pseudo-first-order equation. The equilibrium parameters for adsorption isotherms of the metal ions on the grafted fibre were obtained using Langmuir and Freundlich models, and the Langmuir model was found to be in better correlation with the experimental data with a maximum adsorption capacity of 18.24 mg/g. Thermodynamic parameters such as enthalpy change (ΔH°), free energy change (ΔG°), and entropy change (ΔS°) were calculated; the adsorption process was spontaneous and endothermic.


2017 ◽  
Vol 68 (9) ◽  
pp. 1951-1958
Author(s):  
Szende Tonk ◽  
Cornelia Majdik ◽  
Robert Szep ◽  
Maria Suciu ◽  
Eszter Rapo ◽  
...  

Eggshell waste as adsorbent was successfully used for the removal of Cd(II) ions from model synthetic aqueous solutions. Batch biosorption studies were conducted in order to evaluate the effect of various parameters, such as: contact time and initial metal ion concentration. The changes in the morphological structure were evaluated by TEM and SEM analysis. The experimental isotherm data were analysed using Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm equations, using regression analysis linear and non-linear form. Langmuir model was found to be in better correlation with experimental data (R2=0.99). Biosorption kinetics data were tested using pseudo-first-order, pseudo-second-order, intra-particle and liquid film diffusion models. Kinetics studies showed that the biosorption followed a pseudo-second-order reaction. Removal efficiencies up to 92 % and a maximum adsorption capacity of 8.2 mg/g Cd(II) were obtained experimentally and 7.14 mg/g Cd(II) were obtained from Langmuir isotherm model. The percentage of metal sorption (Ci=11 mg/L, E,(%)=92.42), EDS analyses, and bioconcentration factor were also calculated. The investigation findings suggested that the physical adsorption is controlling the adsorption rate. Results of this study indicate that eggshell waste can be effectively used for the removal of Cd(II) ions from aquatic environments. The process is feasible, reliable and eco-friendly.


2014 ◽  
Vol 609-610 ◽  
pp. 26-31
Author(s):  
Chun Lei Li ◽  
Hui Xu ◽  
Jun Long Zhang ◽  
Wei Wang ◽  
Jing Tang ◽  
...  

A removal of Cu (II) ions from aqueous solutions onto PAM/ATP has been investigated using batch adsorption technique, including the effect of pH, contact time, initial metal ion concentration, adsorption thermodynamics and kinetics. PAM/ATP was characterized with Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The equilibrium data were analyzed using Langmuir and Freundlich isotherms and the best interpretation was given by Langmuir. The maximum adsorption capacity was found to be 212 mg/g after 60 min when pH =3. Regeneration experiments showed that the investigated PAM/ATP could be reused without significant adsorption losses even after five adsorption-desorption cycles.


Environments ◽  
2020 ◽  
Vol 7 (12) ◽  
pp. 112
Author(s):  
Vincent Laderriere ◽  
Louise-Emmanuelle Paris ◽  
Claude Fortin

Biofilms can be used as a biomonitoring tool to determine metal bioavailability in streams affected by mining and other anthropogenic activities. Surface water and biofilm were sampled over two years from rivers located in the vicinity of a mine located in a Nordic ecosystem (Nunavik, Quebec). Biofilm metal content (Cd, Cu, and Ni) as well as a variety of physicochemical properties were determined to examine relationships between metal accumulation and water quality. Among the three metals of interest, copper and nickel had the highest levels of accumulation and cadmium had the lowest. When considering the exposure levels, nickel was the most abundant metal in our sampling sites. Both exposure and accumulation levels were consistent over time. Biofilm metal content was highly correlated to the ambient free metal ion concentration for sites of circumneutral pHs for all three metals. When the surface water pH was below 6, biofilm metal content was much lower than at other sites with similar aqueous metal concentrations of exposure. This apparent protective effect of decreasing pH can be explained by proton competition with dissolved metals for uptake binding sites at the surface of the organisms within the biofilm as described by the Biotic Ligand Model principles. The relationships obtained for Cd and Cu were overlapping those observed in previous publications, indicating strong similarities in metal accumulation processes in biofilms over very large geographical areas. Although more data are needed for Ni, our results show that biofilms represent a promising metal biomonitoring tool.


2013 ◽  
Vol 28 ◽  
pp. 94-101 ◽  
Author(s):  
Rajeshwar Man Shrestha ◽  
Raja Ram Pradhananga ◽  
Margit Varga ◽  
Imre Varga

The present study deals with the use of activated carbons prepared from Lapsi seed stone as adsorbents for the removal of Pb (II) ions from aqueous solution. Two series of carbon have been prepared from Lapsi seed stones by treating with conc. H2SO4 and a mixture of H2SO4 and HNO3 in the ratio of 1:1 by weight for removal of metal ions. Chemical characterization of the resultant activated carbon was studied by Fourier Transform Infrared Spectroscopy and Boehm titration which revealed the presence of oxygen containing surface functional groups like carboxylic, lactonic, phenolic in the carbons. The effect of pH and initial metal ion concentration on the adsorption was studied in a batch process mode. The optimum pH for lead adsorption is found to be equal to 5. The adsorption data were better fitted with the Langmuir equations than Freundlich adsorption equation to describe the equilibrium isotherms. The maximum adsorption capacity of Pb (II) on the resultant activated carbons was 277.8 mg g-1 with H2SO4 and 423.7 mg g-1 with a mixture of H2SO4 and HNO3. The waste material used in the preparation of the activated carbons is inexpensive and readily available. Hence the carbons prepared from Lapsi seed stones can act as potential low cost adsorbents for the removal of Pb (II) from water. DOI: http://dx.doi.org/10.3126/jncs.v28i0.8114 Journal of Nepal Chemical Society Vol. 28, 2011 Page: 94-101 Uploaded Date: May 24, 2013


2021 ◽  
Vol 14 (14) ◽  
pp. 51-61
Author(s):  
Prakash Kumar Jha ◽  
Vinay Kumar Jha

The dry spinach leaves fine powder was modified by activation with conc. H2SO4 and the adsorbent material was then characterized by using FTIR, EDX, optical microscopy, XRD analysis and methylene blue adsorption method. The EDX result showed about 95 % carbon in the adsorbent material. The maximum specific surface area measured was 499 m2/g. The weak and broad XRD diffraction peaks at 2θ angles 20.5 and 42° were characterized as of activated carbon with the appearance of sharp peak of SiO2 at 2θ angle 26.37°. Optical microscopy Image analysis showed the Porous nature of adsorbents. The adsorption of arsenite on the modified spinach leaves powder adsorbent was investigated by varying different experimental parameters such as pH, adsorbent dose, contact time and As (Ⅲ) ion concentration. The adsorption process was found to be best fitted to Langmuir adsorption isotherm model controlled by pseudo-second–order kinetics with the rate constant value 0.01830 g/(mg·min). The maximum adsorption was observed at pH 6 at room temperature. The maximum adsorption capacity for As (Ⅲ) on modified spinach leaves powder was found to be 58.480 mg/g. The value of ∆G was -22 kJ/mole which confirmed the adsorption process was favored by physisorption. The slope of the linear plot of Qt vs t0.5 was linear but not passed through the origin, which indicates that, the intraparticle diffusion was not only rate controlling step.


Sign in / Sign up

Export Citation Format

Share Document