Removal of Mn(II) from Aqueous Solution Using Saponified Garlic Peel

2014 ◽  
Vol 694 ◽  
pp. 382-386 ◽  
Author(s):  
Bo Liang ◽  
Wan He Zhao ◽  
Kai Huang ◽  
Hong Min Zhu

The removal of Mn (II) ion by saponified garlic peel (S-GP) was investigated using batch adsorption. SEM and FT-IR were employed to investigate the physical and chemical properties of S-GP. The adsorption was evaluated as a function of initial metal ion concentration, contact time and temperature. The maximum adsorption capacity for Mn (II) was 0.51 mol/kg, and the adsorption process followed the Langmuir model. Pseudo-second-order models fitted the experimental data well and kinetic parameters, rate constants, equilibrium sorption capacity and related correlation coefficients at various temperatures were calculated and discussed. A possible adsorption mechanism based on a cation exchange was proposed for the adsorption of Mn (II).

2020 ◽  
Author(s):  
Merve Özçelik ◽  
Mustafa CAN ◽  
Mustafa İmamoğlu

Adsorption of gold, and palladium species containing chlorine ions species onto commercial N-{2-[Bis(2-aminoethyl)amino]ethyl}aminomethyl–polystyrene polymer beads (TRIS) were investigated. The influence of the pH, initial metal ion concentration, and contact time on the adsorption performance was examined in a batch adsorption experiment. Langmuir, Modified Langmuir, Freundlich and Freundlich, Dubinin–Radushkevich isotherm model variables are calculated. The Langmuir monolayer adsorption capacities of the Pd (II), and Au (III) chlorine ions species were found to be 204.5, and 168.5 mg/g, respectively. The two metal adsorption kinetics fit the pseudo-second order kinetic models. In thermodynamic calculations, the choice of different equilibrium constant and withal using dimension containing constant usage are an important problem in the field. To overcome these problems, the Modified Langmuir isotherm equilibrium constant is used at determination of thermodynamic parameters. Adsorption mechanism steps were characterized by using FT-IR, SEM, and EDS. The adsorbent is interacted with each metal ions in HCl solution electrostatic interaction and surface complex formation between the amine groups. The calculation of the thermodynamic parameters using the dimensionless modified Langmuir equilibrium constant calculated more satisfying and more reliable way. All thermodynamic parameters suggested that Pd (II) and Au (III) adsorptions onto TRIS beads was a spontaneous, physisorption.


2020 ◽  
Author(s):  
Merve Özçelik ◽  
Mustafa CAN ◽  
Mustafa İmamoğlu

Adsorption of gold, and palladium species containing chlorine ions species onto commercial N-{2-[Bis(2-aminoethyl)amino]ethyl}aminomethyl–polystyrene polymer beads (TRIS) were investigated. The influence of the pH, initial metal ion concentration, and contact time on the adsorption performance was examined in a batch adsorption experiment. Langmuir, Modified Langmuir, Freundlich and Freundlich, Dubinin–Radushkevich isotherm model variables are calculated. The Langmuir monolayer adsorption capacities of the Pd (II), and Au (III) chlorine ions species were found to be 204.5, and 168.5 mg/g, respectively. The two metal adsorption kinetics fit the pseudo-second order kinetic models. In thermodynamic calculations, the choice of different equilibrium constant and withal using dimension containing constant usage are an important problem in the field. To overcome these problems, the Modified Langmuir isotherm equilibrium constant is used at determination of thermodynamic parameters. Adsorption mechanism steps were characterized by using FT-IR, SEM, and EDS. The adsorbent is interacted with each metal ions in HCl solution electrostatic interaction and surface complex formation between the amine groups. The calculation of the thermodynamic parameters using the dimensionless modified Langmuir equilibrium constant calculated more satisfying and more reliable way. All thermodynamic parameters suggested that Pd (II) and Au (III) adsorptions onto TRIS beads was a spontaneous, physisorption.


2014 ◽  
Vol 609-610 ◽  
pp. 26-31
Author(s):  
Chun Lei Li ◽  
Hui Xu ◽  
Jun Long Zhang ◽  
Wei Wang ◽  
Jing Tang ◽  
...  

A removal of Cu (II) ions from aqueous solutions onto PAM/ATP has been investigated using batch adsorption technique, including the effect of pH, contact time, initial metal ion concentration, adsorption thermodynamics and kinetics. PAM/ATP was characterized with Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The equilibrium data were analyzed using Langmuir and Freundlich isotherms and the best interpretation was given by Langmuir. The maximum adsorption capacity was found to be 212 mg/g after 60 min when pH =3. Regeneration experiments showed that the investigated PAM/ATP could be reused without significant adsorption losses even after five adsorption-desorption cycles.


2020 ◽  
Author(s):  
Merve Özçelik ◽  
Mustafa CAN ◽  
Mustafa Imamoglu

Adsorption of gold, rhodium, platinium, and palladium species containing chlorine ions species onto commercial N-{2-[Bis(2-aminoethyl)amino]ethyl}aminomethyl–polystyrene polymer beads (TRIS) were investigated. The influence of the pH, initial metal ion concentration, and contact time on the adsorption performance was examined in a batch adsorption experiment. Langmuir, Modified Langmuir, Freundlich and Freundlich, Dubinin–Radushkevich isotherm model variables are calculated. The Langmuir monolayer adsorption capacities of the Pd (II), and Au (III) chlorine ions species were found to be 204.5, and 168.5 mg/g, respectively. The two metal adsorption kinetics fit the pseudo-second order kinetic models. In thermodynamic calculations, the choice of different equilibrium constant and withal using dimension containing constant usage are an important problem in the field. To overcome these problems, the Modified Langmuir isotherm equilibrium constant is used at determination of thermodynamic parameters. Adsorption mechanism steps were characterized by using FT-IR, SEM, and EDS. The adsorbent is interacted with each metal ions in HCl solution electrostatic interaction and surface complex formation between the amine groups. The calculation of the thermodynamic parameters using the dimensionless modified Langmuir equilibrium constant calculated more satisfying and more reliable way. All thermodynamic parameters suggested that Pd (II) and Au (III) adsorptions onto TRIS beads was a spontaneous, physisorption.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xue Geng ◽  
Rongjun Qu ◽  
Xiangyu Kong ◽  
Shengnan Geng ◽  
Ying Zhang ◽  
...  

Dendrimers as commonly used metal ions adsorption materials have the advantages of good adsorption performance and high reuse rate, but the high cost limits its extensive use. Compared with dendrimers, hyperbranched dendrimers have similar physical and chemical properties and are more economical. Therefore, hyperbranched dendrimers are more suitable for industrial large-scale adsorption. The hyperbranched polyamidoamine (HPAMAM) gels were prepared by cross-linking hyperbranched polyamidoamine (HPAMAM-ECH-x and HPAMAM-EGDE-x) with different amounts of epichlorohydrin (ECH) and ethylene glycol diglycidyl ether (EGDE), respectively. The as-synthesized adsorbents were characterized by FT-IR, SEM and XPS. The prepared adsorbents were used to adsorb Hg(Ⅱ) in aqueous solution, and the effects of solution pH, contact time, temperature and initial concentration of metal ion on the adsorption capacity were investigated. The effect of solution pH indicated that the optimum condition to Hg(Ⅱ) removing was at pH 5.0. The adsorption kinetic curves of the two kinds of materials were in accordance with the pseudo-second-order model. For the HPAMAM-ECH samples, the adsorption thermodynamic curves fitted the Langmuir model, while for the HPAMAM-EGDE samples, both Langmuir and Freundlich equations fitted well. The maximum adsorption capacity of HPAMAM-ECH-3 obtained from Langmuir model toward Hg(Ⅱ) was 3.36 mmol/g at pH 5.0 and 35°C.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3208 ◽  
Author(s):  
Marjana Simonič ◽  
Lidija Fras Zemljič

In this paper, the aim of the research was to obtain a highly efficient wool-based sorbent for the removal of zinc Zn(II) from wastewater. To increase the functional groups for metal binding, the wool was functionalized with chitosan. Chitosan has amino groups through which metals can be complexed easily to chelates. The physical and chemical modification of chitosan on wool was performed to analyze the influence of the coating bond on the final ability of the wool to remove metals. The presence of functional chitosan groups onto wool after adsorption was verified by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FT-IR) spectra. The effective binding of chitosan to wool was also determined by potentiometric and polyelectrolyte titration methods. The latter titration was used to analyze the chitosan desorption. The main part of the study was the sorption of Zn(II) on natural and functionalized wool. The influence was investigated as a function of contact time, pH, metal ion concentration and temperature on the sorption process. The absorbent with the highest concentration of protonated amino groups (607.7 mmol/kg) and responding sorption capacity of 1.52 mg/g was obtained with wool physically modified by a macromolecular chitosan solution (1%) at pH = 7. Adsorption of Zn(II) onto pristine and modified wool corresponded to pseudo-second order kinetics (R2 > 0.9884). The Langmuir model was found to be more suitable (R2 > 0.9866) in comparison to the Freundlich model. The Zn(II) sorption process was spontaneous (∆G < 0) and exothermic (∆H < 0). The results found in this study are significant for escalating the possible use of wool modified with polysaccharide coatings as a sustainable source to improve or increase the metal sorption activity of wool.


2015 ◽  
Vol 71 (11) ◽  
pp. 1611-1619 ◽  
Author(s):  
Jun Liu ◽  
Hongyan Du ◽  
Shaowei Yuan ◽  
Wanxia He ◽  
Pengju Yan ◽  
...  

Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T = 293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (–CO−) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions.


2016 ◽  
Vol 74 (7) ◽  
pp. 1644-1657 ◽  
Author(s):  
Mona El-Sayed ◽  
Gh. Eshaq ◽  
A. E. ElMetwally

In our study, Mg–Al–Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg–Al–Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg–Al–Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g−1, and 70.4 mg g−1, respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, qmax, obtained was 113.8 mg g−1, and 79.4 mg g−1 for Co(II), and Ni(II), respectively. Our results showed that Mg–Al–Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.


2012 ◽  
Vol 30 (1) ◽  
pp. 1-21 ◽  
Author(s):  
R.B. Rabelo ◽  
R.S. Vieira ◽  
F.M.T. Luna ◽  
E. Guibal ◽  
M.M. Beppu

Cross-linked chitosan was synthesized with glutaraldehyde (chitosan–GLA) and epichlorohydrin (chitosan–ECH). The structures of these matrices were characterized by elemental analysis, Fourier-transform infrared spectrometry (FT-IR), the degree of de-acetylation and the surface topography as determined via scanning electron microscopy (SEM). After promoting interaction with the metal ion, the adsorbent was also studied using FT-IR and energy dispersive X-ray spectroscopy (EDXS). Adsorption studies for Cu(II) and Hg(II) ions were carried out in a batch process. The adsorption kinetics were tested using three models, viz. pseudo-first-order, pseudo-second-order and intra-particle diffusion. The experimental kinetic data were best fitted by the pseudo-second-order model for Cu(II) ions (R2 ≥ 0.98) and for Hg(II) ions (R2 = 0.99). Higher rate constants (k2) were obtained for the adsorption of Cu(II) ions onto chitosan–GLA [1.40 g/(mmol h)] and for Hg(II) ions onto raw chitosan [5.65 g/(mmol h)]. The adsorption rate depended on the concentration of Cu(II) and Hg(II) ions on the adsorbent surface and on the quantity of ions adsorbed at equilibrium. At 293 K, the Langmuir–Freundlich model provided a better fit to the adsorption isotherms on both raw and cross-linked chitosan membranes. The maximum adsorption capacity for Cu(II) ions was obtained with the chitosan–GLA matrix (2.7 mmol/g). A maximum adsorption capacity of 3.1 mmol/g was attained for Hg(II) ions onto the chitosan–ECH matrix.


2019 ◽  
Author(s):  
Chem Int

An easy route for preparation emulsion of kaolinite (Al2Si2O5.4H2O) from Sweileh sand deposits, west Amman, Jordan by hydrochloric acid under continuous stirring for 4 h at room temperature was performed and nano kaolinite powder was used as an adsorbent for the removal of Cu(II), Zn(II) and Ni(II) ions. Nano kaolinite was characterized by XRD, FT-IR and SEM techniques. Effect of pH, adsorbent dose, initial metal ion concentration, contact time and temperature on adsorption process was examined. The negative values of ΔGo and the positive value of ΔHo revealed that the adsorption process was spontaneous and endothermic. The Langmuir isotherm model fitted well to metal ions adsorption data and the adsorption capacity. The kinetic data provided the best correlation of the adsorption with pseudo-second order kinetic model. In view of promising efficiency, the nano kaolinite can be employed for heavy metal ions adsorption.


Sign in / Sign up

Export Citation Format

Share Document