The Different Fractal Structure of Oxide Nanopowders Depending on Method of Production

2018 ◽  
Vol 271 ◽  
pp. 124-132 ◽  
Author(s):  
Vyacheslav V. Syzrantsev ◽  
Ludmila S. Vikulina ◽  
S.P. Bardakhanov ◽  
Andrey V. Nomoev ◽  
Natalya O. Kopanitsa ◽  
...  

This study was undertaken to compare chemically identical nanoparticles that have been synthesed by different methods. The methodology applied allows the identification of different characteristics in the structure and surface parameters of nanoparticles. The study shows that the structural parameters of nanoparticles are to a great extend related to the conditions in which nanoparticles are formed. This is demonstrated through the comparison of three oxides and their different methods of synthesis. The results show that the method of synthesis defines the structure of the nanoparticles; the surface and qualitative and quantitative parameters of the crystaline phases, energy shifts and changes in the internal electron levels. The examples of nanoliquids and the associated polymer strength identify that the interaction of nanoparticles with the environment is also depends on the synthesis method. It is proposed that a fractal dimension may be used as a basic parameter to classify nanoparticles and predict the properties in their interaction with various media.

Author(s):  
V.Yu. Fokina ◽  
E.А. Kizima ◽  
I.V. Miheev ◽  
A.I. Ivankov ◽  
V.M. Garamus

Two types of fullerene C60 water dispersions were investigated by a small-angle X-ray and neutron scattering. As a result, structural parameters of fullerene aggregates were obtained. The water dispersions were obtained by the solvent-exchange technique and by huge dilution of initial C60/Nmethylpyrrolidone solution. The structure organization of water dispersions is considered in respect to their technique preparation. It was shown that fullerene aggregates were characterized by highly polydispersity in size for all dispersions. In the case of son/nC60 dispersion it was found that fullerenes formed aggregates with a dense nucleus (namely a surface fractal) with a radius of 58 ± 1 nm and a fractal dimension of 2.3. In turn, the nmp/nC60 system was characterized by the branched aggregates with fractal dimension 1.5 and bimodal particle size distribution.


Author(s):  
Val.I. Surikov ◽  
◽  
E.A. Rogachev ◽  
A.M. Lasitsa ◽  
◽  
...  

The paper shows the promising use of the "fractal dimension" parameter for qualitative and quantitative analysis of the surface structure of samples based of micrographs obtained by scanning electron microscopy and atomic force microscopy. The interrelation of this parameter with some mechanical characteristics of polymeric composite material PTFE-3%tu121 is investigated.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5662
Author(s):  
Joanna Pakulnicka ◽  
Andrzej Zawal

Dystrophic lakes undergo natural disharmonic succession, in the course of which an increasingly complex and diverse, mosaic-like pattern of habitats evolves. In the final seral stage, the most important role is played by a spreading Sphagnum mat, which gradually reduces the lake’s open water surface area. Long-term transformations in the primary structure of lakes cause changes in the structure of lake-dwelling fauna assemblages. Knowledge of the succession mechanisms in lake fauna is essential for proper lake management. The use of fractal concepts helps to explain the character of fauna in relation to other aspects of the changing complexity of habitats. Our 12-year-long study into the succession of water beetles has covered habitats of 40 selected lakes which are diverse in terms of the fractal dimension. The taxonomic diversity and density of lake beetles increase parallel to an increase in the fractal dimension. An in-depth analysis of the fractal structure proved to be helpful in explaining the directional changes in fauna induced by the natural succession of lakes. Negative correlations appear between the body size and abundance. An increase in the density of beetles within the higher dimension fractals is counterbalanced by a change in the size of individual organisms. As a result, the biomass is constant, regardless of the fractal dimension.


2019 ◽  
Vol 127 ◽  
pp. 01001 ◽  
Author(s):  
Tembulat Kumykov

The paper considers a fractal dynamic charge accumulation model in thunderstorm clouds in view of the fractal dimension. Analytic solution to the model equation has been found. Using numerical calculations we have shown the relationship between the charge accumulation and the medium with the fractal structure. A comparative study of thunderstorm electrification mechanisms have been performed.


1999 ◽  
Vol 42 (9) ◽  
pp. 965-972 ◽  
Author(s):  
Yue Zhang ◽  
Qikai Li ◽  
Wuyang Chu ◽  
Chen Wang ◽  
Chunli Bai

Fractals ◽  
1993 ◽  
Vol 01 (04) ◽  
pp. 908-916 ◽  
Author(s):  
Z.Y. YUE ◽  
B. ZHANG ◽  
G. WINNEWISSER ◽  
J. STUTZKI

Two-dimensional compressible turbulence in a self-gravitating, magnetic interstellar medium is calculated as an initial value problem. It is shown that even if the initial density distribution is homogeneous and the initial velocity distribution contains only a few Fourier components, the nonlinear interaction among the Fourier components will generate more and more Fourier components and lead to a turbulent and fractal structure in the interstellar medium. The calculations are carried out for three different initial states. In order to see the time evolution, detailed density distributions and fractal dimensions of the density contours are calculated at three moments of time for each of the initial states. The results show that the fractal dimension remains almost the same (~1.4–1.5), although the detailed density distribution has changed considerably. The insensibility of the fractal dimension of density contours to both the initial conditions and the evolution time is in good agreement with observations of molecular clouds in the interstellar medium.


Fractals ◽  
2002 ◽  
Vol 10 (01) ◽  
pp. 13-18 ◽  
Author(s):  
YOSHIAKI KUMAGAI

We propose a new method to describe scaling behavior of time series. We introduce an extension of extreme values. Using these extreme values determined by a scale, we define some functions. Moreover, using these functions, we can measure a kind of fractal dimension — fold dimension. In financial high frequency data, observations can occur at varying time intervals. Using these functions, we can analyze non-equidistant data without interpolation or evenly sampling. Further, the problem of choosing the appropriate time scale is avoided. Lastly, these functions are related to a viewpoint of investor whose transaction costs coincide with the spread.


Fractals ◽  
1993 ◽  
Vol 01 (04) ◽  
pp. 939-946 ◽  
Author(s):  
Z. DONKÓ ◽  
I. PÓCSIK

The motion of electrons in helium gas in the presence of a homogeneous external electric field was studied. Moving between the two electrodes, the electrons participate in elastic and inelastic collision processes with gas atoms. In ionizing collisions, secondary electrons are also created and in this way self-similar electron avalanches build up. The statistical distribution of the fractal dimension and electron multiplication of electron avalanches was obtained based on the simulation of a large number of electron avalanches. The fractal dimension shows a power-law dependence on electron multiplication with an exponent of ≈0.33.


2020 ◽  
Vol 51 (6) ◽  
pp. 1397-1408
Author(s):  
Xianmeng Meng ◽  
Pengju Zhang ◽  
Jing Li ◽  
Chuanming Ma ◽  
Dengfeng Liu

Abstract In the past, a great deal of research has been conducted to determine the fractal properties of river networks, and there are many kinds of methods calculating their fractal dimensions. In this paper, we compare two most common methods: one is geomorphic fractal dimension obtained from the bifurcation ratio and the stream length ratio, and the other is box-counting method. Firstly, synthetic fractal trees are used to explain the role of the junction angle on the relation between two kinds of fractal dimensions. The obtained relationship curves indicate that box-counting dimension is decreasing with the increase of the junction angle when geomorphic fractal dimension keeps constant. This relationship presents continuous and smooth convex curves with junction angle from 60° to 120° and concave curves from 30° to 45°. Then 70 river networks in China are investigated in terms of their two kinds of fractal dimensions. The results confirm the fractal structure of river networks. Geomorphic fractal dimensions of river networks are larger than box-counting dimensions and there is no obvious relationship between these two kinds of fractal dimensions. Relatively good non-linear relationships between geomorphic fractal dimensions and box-counting dimensions are obtained by considering the role of the junction angle.


Sign in / Sign up

Export Citation Format

Share Document