Thermal Resistance of Fly Ash Geopolymers with Alumina as Additive

2018 ◽  
Vol 281 ◽  
pp. 182-188
Author(s):  
Yong Sing Ng ◽  
Yun Ming Liew ◽  
Cheng Yong Heah ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin

The present work investigates the effect of alumina addition on the thermal resistance of fly ash geopolymers. Fly ash geopolymers were synthesised by mixing fly ash with activator solution (A mixture of 12M sodium hydroxide and sodium silicate) at fly ash/activator ratio of 2.5 and sodium silicate/sodium hydroxide ratio of 2.5. The alumina (0, 2 and 4 wt %) was added as an additive. The geopolymers were cured at room temperature for 24 hours and 60°C for another 24 hours. After 28 days, the geopolymers was heated to elevated temperature (200 - 1000°C). For unexposed geopolymers, the addition of 2 wt % of alumina increased the compressive strength of fly ash geopolymers while the strength decreased when the content increased to 4 wt.%. The temperature-exposed geopolymers showed enhancement of strength at 200°C regardless of the alumina content. The strength reduced at higher temperature exposure (> 200°C). Despite the strength degradation at elevated temperature, the strength attained was relatively high in the range of 13 - 45 MPa up to 1000°C which adequately for application as structural materials.

2014 ◽  
Vol 699 ◽  
pp. 15-19 ◽  
Author(s):  
Rosniza Hanim Abdul Rahim ◽  
Khairun Azizi Azizli ◽  
Zakaria Man ◽  
Muhd Fadhil Nuruddin

Geopolymer is associated with the alkali activation of materials rich in Si and Al, and alkali activator such as sodium hydroxide is used for the dissolution of raw material with the addition of sodium silicate solution to increase the dissolution process. However, the trend of strength development of geopolymer using sodium hydroxide alone is not well established. This paper presents an evaluation on compressive strength of fly ash–based geopolymer by varying curing time with respect to different curing temperature using sodium hydroxide as the only activator. The samples were cured at room temperature and at an elevated temperature (60°C). Further analysis on the microstructure of geopolymer products cured at 60°C was carried out using Field Emission Scanning Microscopy (FESEM). It can be observed that the compressive strength increased as the curing time increased when cured at room temperature; whereas at elevated temperature, the strength increased up to a maximum 65.28 MPa at 14 days but gradually decreased at longer curing time. Better compressive strength can be obtained when the geopolymer was cured at an elevated temperature compared to curing at room temperature.


2014 ◽  
Vol 600 ◽  
pp. 338-344 ◽  
Author(s):  
Alexandre Silva de Vargas ◽  
Ruby M. de Gutierrez ◽  
João Castro-Gomes

Geopolymerization is a chemical process in which aluminosilicate materials are precursors to obtain binders that have a low environmental impact. Fly ash has been used as a precursor for the development of these binders. However, thermal curing is needed to accelerate the polycondensation of aluminosilicate, which limits the application of this new binder in the construction industry. Thus, the objective of this study was to evaluate the feasibility to obtain such binders with good mechanical properties when cured at room temperature. The precursor material consisted of different mixtures of fly ash and metakaolin that were activated using combined sodium hydroxide and sodium silicate alkaline solutions. The effect on the compressive strength of different proportions of the alkaline solutions was studied. Compressive strengths of about 40 MPa were achieved at 91 days for the samples containing 70% fly ash and 30% metakaolin, activated using an alkaline solution of 50% sodium hydroxide and 50% sodium silicate. X-ray diffraction analysis showed the formation of natrite in geopolymeric samples, as well as the presence of crystalline compounds, such as quartz, mullite and hematite, in fly ash and metakaoline. Scanning electron microscopy analysis showed that in geopolymeric mixtures with higher compressive strength dissolution of fly ash and metakaolin particles occurred almost completely and that aluminosilicate dense gel has been formed extensively.


2014 ◽  
Vol 803 ◽  
pp. 355-361 ◽  
Author(s):  
Afshan Asif ◽  
Zakaria Man ◽  
Khairun Azizi Mohd Azizli ◽  
Muhd Fadhil Nuruddin ◽  
Lukman Ismail

The present study has been performed to see the effect of varying Si/Al ratio (1.85 to 3) by using same concentration of NaOH and same solid/water ratio for the development of mechanical properties at 28 days of room temperature and also select the Si/Al ratio for coating application. The performance of the geopolymer was investigated on the basis of compressive strengthSEM along with EDS. Pure sodium hydroxide specimens displayed decreased strength. However the combination of sodium hydroxide and sodium silicate specimen with aSi/Al ratio of 2 showed maximum strength, whereas the specimen after Si/Al ratio 2 showed decrease in strength.


2018 ◽  
Vol 281 ◽  
pp. 175-181
Author(s):  
Hui Teng Ng ◽  
Cheng Yong Heah ◽  
Yun Ming Liew ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin

In the present work, a comparative study of the thermal performance of unfoamed and foamed geopolymers was investigated. The geopolymers were prepared by mixing fly ash with alkali activator (a mixture of sodium hydroxide and sodium silicate). The geopolymer foams were prepared by adding hydrogen peroxide (H2O2, 2wt.% and 4wt.%). The geopolymers were cured at room temperature (29°C) for 24 hours and at 60°C for another 24 hours. The bulk density and compressive strength decreased with increasing H2O2 up to 2wt.% and increased when 4wt.% of H2O2 was added. In order to test the thermal resistance, the geopolymers were heated at elevated temperature (200- 1000°C). Unheated geopolymers showed bulk density and compressive strength in the range of 1.6– 1.7g/cm3 and 15–17MPa, respectively. When heated up to 1000°C, the geopolymers could withstand high temperature without any disintegration and spalling. Both unfoamed and foamed geopolymers showed highest compressive strength at 200°C (17–22MPa). Further decreased in compressive strength was observed upon heating up to 800°C (10–17MPa). The compressive strength regained (14–21MPa) when heated up to 1000°C. The compressive strength was even higher than that recorded at room temperature. In the present work, unfoamed geopolymers showed overall higher thermal resistance than foamed geopolymers.


2013 ◽  
Vol 421 ◽  
pp. 384-389 ◽  
Author(s):  
A.M. Mustafa Al Bakri ◽  
Md Tahir Muhammad Faheem ◽  
Andrei Victor Sandhu ◽  
A. Alida ◽  
Mohd Arif Anuar Mohd Salleh ◽  
...  

Geopolymer is a new binding material produced to substitute the ordinary Portland cement (OPC) function as a binder in concrete. As we know, different types of geopolymer will have different properties. In this research, the different types of geopolymer raw materials had been studied in term of microstructure. Different type of materials which is fly ash (class F) and kaolin had been mixed with alkaline solution consist of sodium silicate and sodium hydroxide with suitable geopolymer raw material to alkaline activator and sodium silicate to sodium hydroxide ratios. The geopolymer samples with different types of raw material were then cured at a temperature 70°C for 24 hr and maintained at room temperature until the testing was conducted. After the geopolymers were aged for seven days, the testing was conducted.


Author(s):  
A. Z. Mohd Ali ◽  
◽  
N. A. Jalaluddin ◽  
N. Zulkiflee ◽  
◽  
...  

The production of ordinary Portland cement (OPC) consumes considerable amount of natural resources, energy and at the same time contribute in high emission of CO2 to the atmosphere. A new material replacing cement as binder called geopolymer is alkali-activated concrete which are made from fly ash, sodium silicate and sodium hydroxide (NaOH). The alkaline solution mixed with fly ash producing alternative binder to OPC binder in concrete named geopolymer paste. In the process, NaOH was fully dissolved in water and cooled to room temperature. This study aims to eliminate this process by using NaOH in solid form together with fly ash before sodium silicate liquid and water poured into the mixture. The amount of NaOH solids were based on 10M concentration. The workability test is in accordance to ASTM C230. Fifty cubic mm of the geopolymer paste were prepared which consists of fly ash to alkaline solution ratio of 1: 0.5 and the curing regime of 80℃ for 24 hours with 100% humidity were implemented. From laboratory test, the workability of dry method geopolymer paste were decreased. The compressive strength of the dry mix of NaOH showed 55% and the workability has dropped to 58.4%, it showed strength reduction compared to the wet mix method.


2011 ◽  
Vol 261-263 ◽  
pp. 416-420 ◽  
Author(s):  
Fu Ping Jia ◽  
Heng Lin Lv ◽  
Yi Bing Sun ◽  
Bu Yu Cao ◽  
Shi Ning Ding

This paper presents the results of elevated temperatures on the compressive of high fly ash content concrete (HFCC). The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and the residual compressive strength was tested after exposure to elevated temperature 250, 450, 550 and 650°C and room temperature respectively. The results showed that the compressive strength apparently decreased with the elevated temperature increased. The presence of fly ash was effective for improvement of the relative strength, which was the ratio of residual compressive strength after exposure to elevated temperature and ordinary concrete. The relative compressive strength of fly ash concrete was higher than those of ordinary concrete. Based on the experiments results, the alternating simulation formula to determine the relationship among relative strength, elevated temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after elevated temperature.


2015 ◽  
Vol 754-755 ◽  
pp. 152-156 ◽  
Author(s):  
Nur Ain Jaya ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Che Mohd Ruzaidi Ghazali ◽  
M. Binhussain ◽  
Kamarudin Hussin ◽  
...  

Clay based geopolymer ceramic were produced through the geopolymerisation process by the alkali activation of kaolin with an activator solution which is mixture of sodium silicate and sodium hydroxide and undergoes heating at elevated temperature. The concentration of NaOH used in this study was in the range of 6 M-12 M. The ratio of kaolin to alkaline activator used is 1.0. Three different ratios of Na2SiO3/NaOH of 0.16, 0.24 and 0.32 were used to investigate the optimum flexural strength. The samples were cured at 80 °C for 24 hours and sintered at temperatures ranging from 900 °C-1200 °C. The optimum flexural strength of 86.833 MPa is obtained when the ratios of Na2SiO3/NaOH is 0.24 with the NaOH concentration of 12M at 1200 °C.


2010 ◽  
Vol 69 ◽  
pp. 69-74 ◽  
Author(s):  
Ömer Arıöz ◽  
Kadir Kilinç ◽  
Mustafa Tuncan ◽  
Ahmet Tuncan ◽  
Taner Kavas

Geopolymer is a new class of three-dimensionally networked amorphous to semi-crystalline alumino-silicate materials, and first developed by Professor Joseph Davidovits in 1978. Geopolymers can be synthesized by mixing alumino–silicate reactive materials such as kaolin, metakaolin or pozzolans in strong alkaline solutions such as NaOH and KOH and then cured at room temperature. Heat treatment applied at higher temperatures may give better results. Depending on the mixture, the optimum temperature and duration vary 40-100 °C and 2-72 hours, respectively. The properties of geopolymeric paste depend on type of source material (fly ash, metakaolin, kaolin), type of activator (sodium silicate-sodium hydroxide, sodium silicate-potassium hydroxide), amount of activator, heat treatment temperature, and heat treatment duration. In this experimental investigation, geopolymeric bricks were produced by using F-type fly ash, sodium silicate, and sodium hydroxide solution. The bricks were treated at various temperatures for different hours. The compressive strength and density of F-type fly ash based geopolymeric bricks were determined at the ages of 7, 28 and 90 days. Test results have revealed that the compressive strength values of F-type fly ash based geobricks ranged between 5 and 60 MPa. It has been found that the effect of heat treatment temperature and heat treatment duration on the density of F-type fly ash based geobricks was not significant. It should be noted that the spherical particle size increased as the heat treatment temperature increased in the microstructure of F-type fly ash based geobricks treated in oven at the temperature of 60 °C for 24 hours.


2012 ◽  
Vol 626 ◽  
pp. 937-941 ◽  
Author(s):  
W.I. Wan Mastura ◽  
H. Kamarudin ◽  
I. Khairul Nizar ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
H. Mohammed

This paper reports the results of an experimental work conducted to investigate the effect of curing conditions on the properties of fly ash-based geopolymer bricks prepared by using fly ash as base material and combination of sodium hydroxide and sodium silicate as alkaline activator. The experiments were conducted by varying the curing time in the range of 1-24 hours respectively. The specimens cured for a period of 24 hours have presented the highest compressive strength for all ratio of fly ash to sand. For increasing curing time improve compressive strength and decreasing water absorption.


Sign in / Sign up

Export Citation Format

Share Document