Analysis of the Influence of Surface Finishing on the Performances of Dies for HPDC

2019 ◽  
Vol 285 ◽  
pp. 459-463 ◽  
Author(s):  
Federico Simone Gobber ◽  
Daniele Ugues ◽  
Mario Rosso

The Al-alloy die casting die is a sector where the operating environment imposes a very severe aggression to hot working tools. Steel grades for such application, techniques for their surface modification and specifically conceived lubricants are continuously improved so as to limit Al soldering. Within this scenario the interaction between lubricant and die surface and the effect of finishing levels of such surface is poorly studied. This paper deals with a study of the influence of dies surface roughness on the working behavior of a die casting lubricant and on surface damages of a tool steel grade. Tool steel samples were prepared for the research and two different levels of surface roughness (as polished and as finely sand blasted) were investigated. Apart from the base characterization of steels and surface, two specific test rigs were used to study the lubricant-tool steel surface-Al alloy interactions. One of test rig was devoted to study the coupling principles of tool die surface-lubricant, while the other test rig was used to perform a cyclic immersion test in molten Al-alloy. The derived data were compared to the experimental investigation of cracks and craters as provided by cycling with a correlation with the surface finishing level of samples.

Alloy Digest ◽  
1968 ◽  
Vol 17 (9) ◽  

Abstract Crucible CSM #2 is an alloy tool steel recommended for die casting dies and plastic molds. It is usually heat treated to two hardness levels, either 200 Brinell or 300 Brinell. CSM #2 machines readily and polishes easily at both hardness levels. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-210. Producer or source: Crucible Steel Company of America.


Alloy Digest ◽  
1987 ◽  
Vol 36 (12) ◽  

Abstract UHB QRO 80 MICRODIZED is a chromium-molybdenum-vanadium tool steel with improved performance for tooling used at elevated temperature as in forging, extrusion and die casting. It is electro-slag refined. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: TS-486. Producer or source: Uddeholm Aktiebolag.


Alloy Digest ◽  
1982 ◽  
Vol 31 (1) ◽  

Abstract AISI Type P20 is a chromium-molybdenum tool steel of medium carbon content. It usually is supplied in the prehardened condition (about 300 Brinell) so that the cavity can be machined and the mold or die placed directly in service; however, for some uses further treatments are employed. It is produced to high-quality tool-steel standards to permit a high luster to be achieved on the surface of the polished die cavity. P20 is used for molds for plastics and for die-casting dies for zinc and other low-temperature casting alloys. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, and machining. Filing Code: TS-393. Producer or source: Tool steel mills.


Author(s):  
Rengen Ding ◽  
Haibo Yang ◽  
Shuzhi Li ◽  
Guodong Wu ◽  
Jiahao Mo ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 701
Author(s):  
Faksawat Poohphajai ◽  
Jakub Sandak ◽  
Michael Sailer ◽  
Lauri Rautkari ◽  
Tiina Belt ◽  
...  

The service life performance of timber products exposed to natural weathering is a critical factor limiting the broad use of wood as an external building element. The goal of this study was to investigate the in-service characterization of an innovative biofinish coating system. It is a novel surface finishing solution based on the bioinspired concept of living fungal cells designed for effective wood protection. The performance of Scots pine (Pinus sylvestris L.) wood coated with biofinish was compared with uncoated references. Samples were exposed to natural weathering for 12 months under the climatic conditions of northern Italy. The visual appearance, colour, gloss, wettability, and 3D surface topography of the wood surface were examined. Results revealed that the total colour changes (∆E) of biofinish-coated wood were negligible. Untreated Scots pine wood revealed the changes in colour after just three months of exposure. The gloss changes of both surface types were small. The contact angle measured on biofinish-coated wood was higher compared to that of uncoated Scots pine. Surface roughness increased in uncoated wood due to the erosion effect caused by the weathering progress. Conversely, the surface roughness of biofinish-coated samples decreased along the exposure time. This phenomenon was explained by two self-healing mechanisms: migration of non-polymerized oil to the cracked surface, where it polymerizes and creates a closed layer, and local regrowth to cover damaged spots by living fungal cells present in the coating. The obtained results revealed the superior aesthetic performance of the biofinish surface treatment against natural weathering. By considering the fully bio-based nature of the investigated coating, it was concluded that this solution can be an attractive alternative for state-of-the-art wood protection technologies.


2012 ◽  
Vol 500 ◽  
pp. 308-313 ◽  
Author(s):  
Guo Qiang Guo ◽  
Zhi Qiang Liu ◽  
Xiao Hu Zheng ◽  
Ming Chen

This paper investigates the effects of MQL system on the grinding performance of Ti-6Al-4V using SiC abrasive, the evaluation of the performance consisted of analyzing the grinding force, surface roughness and surface morphology. The experiment result indicated that the favorable lubricating effect of MQL oil makes it has the lowest value of grinding force, specific energy and force raito. MQL has better surface finish than dry grinding and fluid grinding has the lowest value of surface roughness under different grinding depth. Surface damages such as: side flow, plastic deformation, redeposition are present in dry and fluid grinding. As grinding depth increased, the damages become much more severe. But in MQL condition, it gives better surface integrity than dry and fluid grinding.


2007 ◽  
Vol 359-360 ◽  
pp. 234-238 ◽  
Author(s):  
Qing Liang Zhao ◽  
Bo Wang ◽  
Ekkard Brinksmeier ◽  
Otmann Riemer ◽  
Kai Rickens ◽  
...  

This paper aims to evaluate the surface and sub-surface integrity of optical glasses which were correspondingly machined by coarse and fine-grained diamond grinding wheels on Tetraform ‘C’ and Nanotech 500FG. The experimental results show that coarse-grained diamond grinding wheels are capable of ductile grinding of optical glasses with high surface and sub-surface integrity. The surface roughness values are all in nanometer scale and the sub-surface damages are around several micros in depth, which is comparative to those machined by fine-grained diamond wheels.


Sign in / Sign up

Export Citation Format

Share Document