scholarly journals Morphological and Structural Properties of Sol-Gel Derived ZnO Thin Films Spin-Coated on Different Substrates

2020 ◽  
Vol 301 ◽  
pp. 35-42
Author(s):  
Nabihah Kasim ◽  
Zainuriah Hassan ◽  
Way Foong Lim ◽  
Sabah M. Mohammad ◽  
Hock Jin Quah

In this work, ZnO thin films were prepared by the low-cost sol-gel deposition method onto six different substrates (glass, ITO coated glass, sapphire (Al2O3), p-Si, p-GaN and polyethylene terephthalate (PET)) to study the effects of these substrates on the morphological and structural properties of the produced films. Precursor solution is Zinc acetate dihydrate based dissolved in ethanol with monoethanolamine (C2H7NO) added to act as a stabilizing agent to the sol. The corresponding ZnO thin films were characterized using field emission scanning electron microscopy (FESEM), high resolution X-ray diffraction (XRD) and atomic force microscopy (AFM). Results revealed distinct morphological and structural properties of ZnO thin films deposited on each substrate. The most uniform morphology was identified on glass, owing to the acquisition of the averagely stable grain sizes (58 nm – 61 nm) and thin film thicknesses (280 nm – 325 nm). High resolution XRD analysis showed that the films deposited on glass, ITO, p-Si, and p-GaN were attributed to hexagonal crystallite structures while the films deposited on sapphire and PET substrates exhibited amorphous phases. Amongst the samples, the ZnO thin film spin coated on p-Si demonstrated preferred orientation in (002) direction.

2020 ◽  
Vol 33 (1) ◽  
pp. 24-30
Author(s):  
Anil Kumar Verma ◽  
Swati Sahu ◽  
Mohan Patel ◽  
Sanjay Tiwari

In this work, ZnO has been prepared by the sol-gel method and thin films have been deposited onto the ITO (Indium-Tin-Oxide) coated glass substrates by spin coating method at different ZnO concentration and spin parameters. For this, Sol-gel ZnO was synthesized by Zinc acetate dehydrate, 2-methoxethanol and ethanolamine as a starting material, solvent and stabilizer respectively. The study of deposition parameters on the structural, optical and electrical properties of the ZnO thin films was carried out. The Roughness and thickness were calculated by Profilometer. X-ray diffraction (XRD) analysis of the films showed the polycrystalline nature of the prepared films. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) was used to describe the surface morphology and optical properties were studied using UV-VIS-IR Spectroscopy. The fabricated results showed that ZnO thin films is crystalline and low-cost techniques with good features that will be useful for Organic Solar Cells (OSCs) device as an electron transport layer.


2011 ◽  
Vol 320 ◽  
pp. 124-129
Author(s):  
Yung Kuan Tseng ◽  
Shih Chun Chien ◽  
Ming Hung Chuang ◽  
Chi Sheng Hsu ◽  
Yen Cheng Chen

The purpose of this study was to discuss the effects of different solvent systems for aluminum doped zinc oxide (AZO) thin film deposition by using the sol-gel method. In the conventional sol-gel method of producing AZO thin films, the solution selected as the precursor solvent was used ethylene glycol monomethylether (EGME), which in this study propylene glycol mono-methyl ether (PGME) was used. The precursor solution was observed by TGA/DSC to understand the variations while heating. The two prepared precursor solutions were then respectively spin coated onto substrates of boron silicate glass. XRD analysis indicated both showed significant c-axis preferred orientation. The surface morphology of the films was observed by FESEM, which showed that the thin film surface by PGME solvent was smoother and dense. A four-point probe was used to measure the electrical resistance of the thin films, which the measured results indicated that the thin film produced by PGME had lower resistivity than those produced by EGME. Resulting with a thin film electric resistance reaching as low as 3.474×10-3(W×cm). The visible light transparency was determined via UV-vis analysis. Results showed that the average transparency of thin films produced by the EGME solvent reached 95% and above, where the average transparency from PGME solvent still reached 90% and above. Experimental results demonstrated that PGME is a good option to synthesize AZO thin films.


2017 ◽  
Vol 888 ◽  
pp. 290-296
Author(s):  
Nur Syahraain Zulkiflee ◽  
Rosniza Hussin ◽  
Hasrul Yahya

Thin film has been extensively study due to better structural, surface morphology, and optical properties. The combination of two materials will enhance the properties of thin film. In this study, TiO2/ZnO thin films were deposited on glass substrates via sol-gel method. TiO2 acts as pre-deposited thin film with calcination temperatures at 400 °C, 500 °C, and 600 °C. The post-deposition of TiO2/ZnO thin films were calcined at 500 °C and 600 °C. TiO2 sol-gel was synthesis from titanium (IV) butoxide and butanol as the precursor, while ZnO sol-gel was synthesis from zinc acetate dehydrate and isopropanol as the precursor. The TiO2/ZnO thin films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), and ultraviolet visible spectroscopy (UV-Vis). The effect of calcination temperature and pre-deposited TiO2 thin films show difference results of bilayer thin films. The XRD analysis shows all TiO2/ZnO thin films growth with TiO2 anatase crystalline phase at orientation (1 0 1) and ZnO zincite phase at orientation (1 0 1). The structural properties of TiO2/ZnO thin films were improved by controlling the calcination temperature. Based on AFM analysis, the RMS value for TiO2/ZnO decreases as the calcination temperature increased. The compacted and dense surface roughness were controlled by the temperature. Meanwhile, the percentage of thin film ultraviolet transmittance can be enhanced with combination of two materials, TiO2 and ZnO. Therefore, the pre-deposited layer of thin film with influenced by calcination temperature will improve the crystallinity, surface morphology, and optical properties of TiO2/ZnO thin films.


2015 ◽  
Vol 1109 ◽  
pp. 99-103 ◽  
Author(s):  
K.L. Foo ◽  
U. Hashim ◽  
Chun Hong Voon ◽  
M. Kashif

Transparent semiconductor ZnO thin films deposited on interdigitated electrode (IDE) substrate substrates were obtained by low-cost sol-gel method. The coated ZnO films were annealed in furnace at 500°C for 2 hours. The influence of surface morphologies, crystallization and optical properties was investigated. The structural properties of the annealed ZnO thin films were examined with FESEM and AFM. XRD result shows that all polycrystalline ZnO thin film after annealing have the orientation along the (002) plane. Both FESEM and XRD results revealed that ZnO thin films were composed of hexagonal ZnO crystals in nanoscale dimensions. Moreover, UV-Vis was employed to study the optical properties of the ZnO films. Besides that, the deposited ZnO thin film will further use for pH by I-V curve tracer.


2010 ◽  
Vol 17 (05n06) ◽  
pp. 445-449 ◽  
Author(s):  
SUHUA FAN ◽  
QUANDE CHE ◽  
FENGQING ZHANG

The (100)-oriented Ca0.4Sr0.6Bi4Ti4O15(C0.4S0.6BTi ) thin film was successfully prepared by a sol-gel method on Pt/Ti/SiO2/Si substrate. The orientation and formation of thin films under different annealing schedules were studied using XRD and SEM. XRD analysis indicated that (100)-oriented C0.4S0.6BTi thin film with degree of orientation of I(200)/I(119) = 1.60 was prepared by preannealing the film at 400°C for 3 min followed by rapid thermal annealing at 800°C for 5 min. SEM analysis further indicated that the (100)-oriented C0.4S0.6BTi thin film with a thickness of about 800 nm was mainly composed of equiaxed grains. The remanent polarization and coercive field of the film were 16.1 μC/cm2 and 85 kV/cm, respectively.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Mohammad Hossein Habibi ◽  
Mohammad Khaledi Sardashti

Glass plate-supported nanostructure ZnO thin films were deposited by sol-gel spin coating. Films were preheated at275∘Cfor 10 minutes and annealed at 350, 450, and550∘Cfor 80 minutes. The ZnO thin films were transparent ca 80–90% in visible range and revealed that absorption edges at about 370 nm. Thec-axis orientation improves and the grain size increases which was indicated by an increase in intensity of the (002) peak at34.4∘in XRD corresponding to the hexagonal ZnO crystal. The photocatalytic degradation of X6G an anionic monoazo dye, in aqueous solutions, was investigated and the effects of some operational parameters such as the number of layer and reusability of ZnO nanostructure thin film were examined. The results showed that the five-layer coated glass surfaces have a very high photocatalytic performance.


2017 ◽  
Vol 4 (9) ◽  
pp. 096403 ◽  
Author(s):  
Zohra N Kayani ◽  
Marya Siddiq ◽  
Saira Riaz ◽  
Shahzad Naseem

Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1600 ◽  
Author(s):  
Alexander Tkach ◽  
André Santos ◽  
Sebastian Zlotnik ◽  
Ricardo Serrazina ◽  
Olena Okhay ◽  
...  

If piezoelectric micro-devices based on K0.5Na0.5NbO3 (KNN) thin films are to achieve commercialization, it is critical to optimize the films’ performance using low-cost scalable processing conditions. Here, sol–gel derived KNN thin films are deposited using 0.2 and 0.4 M precursor solutions with 5% solely potassium excess and 20% alkali (both potassium and sodium) excess on platinized sapphire substrates with reduced thermal expansion mismatch in relation to KNN. Being then rapid thermal annealed at 750 °C for 5 min, the films revealed an identical thickness of ~340 nm but different properties. An average grain size of ~100 nm and nearly stoichiometric KNN films are obtained when using 5% potassium excess solution, while 20% alkali excess solutions give the grain size of 500–600 nm and (Na + K)/Nb ratio of 1.07–1.08 in the prepared films. Moreover, the 5% potassium excess solution films have a perovskite structure without clear preferential orientation, whereas a (100) texture appears for 20% alkali excess solutions, being particularly strong for the 0.4 M solution concentration. As a result of the grain size and (100) texturing competition, the highest room-temperature dielectric permittivity and lowest dissipation factor measured in the parallel-plate-capacitor geometry were obtained for KNN films using 0.2 M precursor solutions with 20% alkali excess. These films were also shown to possess more quadratic-like and less coercive local piezoelectric loops, compared to those from 5% potassium excess solution. Furthermore, KNN films with large (100)-textured grains prepared from 0.4 M precursor solution with 20% alkali excess were found to possess superior local piezoresponse attributed to multiscale domain microstructures.


2019 ◽  
Vol 26 (03) ◽  
pp. 1850158 ◽  
Author(s):  
MARYAM MOTALLEBI AGHGONBAD ◽  
HASSAN SEDGHI

Zinc Oxide thin films were deposited on glass substrates by sol–gel spin coating method. Zinc acetate dihydrate, 2-methoxyethanol and monoethanolamine were used as precursor, solvent and stabilizer, respectively. Zinc acetate dihydrate was used with different molar concentrations of 0.15, 0.25 and 0.5 M. Optical properties of ZnO thin films such as dielectric constants, absorption coefficient, Urbach energy and optical band gap energy were calculated by spectroscopic ellipsometry (SE) method. The effect of zinc acetate concentration on optical properties of ZnO thin films is investigated. ZnO thin film with Zn concentration of 0.25 M had the highest optical band gap. Wemple DiDomenico oscillator model was used for calculation of the energy of effective dispersion oscillator, the dispersion energy, the high frequency dielectric constant, the long wavelength refractive index and the free carrier concentration.


Sign in / Sign up

Export Citation Format

Share Document