Localized Deep and Shallow Traps of α-Peaks from Thermally Stimulated Current (TSC) Measurement on Thermoplastic Polymers

2021 ◽  
Vol 317 ◽  
pp. 369-376
Author(s):  
Norhana Abdul Halim ◽  
Siti Zulaikha Ngah Demon ◽  
Norli Abdullah ◽  
Nurazlin Ahmad ◽  
Zul Hazrin Zainal Abidin

In this paper, trap levels around the glass transition temperature (Tg) of polymers have been characterized using Thermally Stimulated Current (TSC) technique. Deconvolution on α-peaks of the Tg for PE (-104 °C), plasticized PVC (-35 °C), PMMA (90 °C) and PET (96 °C) were carried out based on the first-order kinetic theory for non-Debye relaxation. Using temperature, T from TSC experimental data, we have successfully separated the α-peaks of the thermoplastic polymers. It is found that the complex curve of α-peaks can composed of four (4) to eight (8) sub peaks. Dominant sub peaks were identified at Tmax = -105 °C, -34 °C, 89 °C and 92 °C for PE, pPVC, PMMA and PET, respectively. These peaks show activation energy, Ea of shallow and deep trap centers ranged from 0.3 eV to 4.6 Ev where they represent the depolarization of localized dipoles and space charges relaxations in the polymers.

2014 ◽  
Vol 28 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Lech W. Szajdak ◽  
Jerzy Lipiec ◽  
Anna Siczek ◽  
Artur Nosalewicz ◽  
Urszula Majewska

Abstract The aim of this study was to verify first-order kinetic reaction rate model performance in predicting of leaching of atrazine and inorganic compounds (K+1, Fe+3, Mg+2, Mn+2, NH4 +, NO3 - and PO4 -3) from tilled and orchard silty loam soils. This model provided an excellent fit to the experimental concentration changes of the compounds vs. time data during leaching. Calculated values of the first-order reaction rate constants for the changes of all chemicals were from 3.8 to 19.0 times higher in orchard than in tilled soil. Higher first-order reaction constants for orchard than tilled soil correspond with both higher total porosity and contribution of biological pores in the former. The first order reaction constants for the leaching of chemical compounds enables prediction of the actual compound concentration and the interactions between compound and soil as affected by management system. The study demonstrates the effectiveness of simultaneous chemical and physical analyses as a tool for the understanding of leaching in variously managed soils.


Author(s):  
D. de la Lama-Calvente ◽  
M. J. Fernández-Rodríguez ◽  
J. Llanos ◽  
J. M. Mancilla-Leytón ◽  
R. Borja

AbstractThe biomass valorisation of the invasive brown alga Rugulopteryx okamurae (Dictyotales, Phaeophyceae) is key to curbing the expansion of this invasive macroalga which is generating tonnes of biomass on southern Spain beaches. As a feasible alternative for the biomass management, anaerobic co-digestion is proposed in this study. Although the anaerobic digestion of macroalgae barely produced 177 mL of CH4 g−1 VS, the co-digestion with a C-rich substrate, such as the olive mill solid waste (OMSW, the main waste derived from the two-phase olive oil manufacturing process), improved the anaerobic digestion process. The mixture improved not only the methane yield, but also its biodegradability. The highest biodegradability was found in the mixture 1 R. okamurae—1 OMSW, which improved the biodegradability of the macroalgae by 12.9% and 38.1% for the OMSW. The highest methane yield was observed for the mixture 1 R. okamurae—3 OMSW, improving the methane production of macroalgae alone by 157% and the OMSW methane production by 8.6%. Two mathematical models were used to fit the experimental data of methane production time with the aim of assessing the processes and obtaining the kinetic constants of the anaerobic co-digestion of different combination of R. okamurae and OMSW and both substrates independently. First-order kinetic and the transference function models allowed for appropriately fitting the experimental results of methane production with digestion time. The specific rate constant, k (first-order model) for the mixture 1 R. okamurae- 1.5 OMSW, was 5.1 and 1.3 times higher than that obtained for the mono-digestion of single OMSW and the macroalga, respectively. In the same way, the transference function model revealed that the maximum methane production rate (Rmax) was also found for the mixture 1 R. okamurae—1.5 OMSW (30.4 mL CH4 g−1 VS day−1), which was 1.6 and 2.2 times higher than the corresponding to the mono-digestions of the single OMSW and sole R. okamurae (18.9 and 13.6 mL CH4 g−1 VS day−1), respectively.


1976 ◽  
Vol 56 (2) ◽  
pp. 71-78 ◽  
Author(s):  
D. R. CAMERON ◽  
C. G. KOWALENKO

A small subsystem model was developed to simulate the major nitrogen flow pathways in an unsaturated soil treated with ammonium sulphate. A nonlinear Freundlich equilibrium model and a Langmuir kinetic model were used to describe mathematically the adsorption–desorption of soluble NH4+ to the exchangeable and clay-fixed phases, respectively. Time dependent, microbial mediated first-order kinetic models were used to quantify the ammonification and nitrification processes. The subsystem model was then used as a research tool to derive ammonification and nitrification rate coefficients for a preceding incubation experiment conducted using different soil moisture contents and temperatures. The model yields reasonably good fits to the observed data. A subsequent regression analysis relating the coefficients to temperature and moisture pointed out the importance of the temperature–water content interaction term in quantifying microbial mediated processes.


2007 ◽  
Vol 73 (8) ◽  
pp. 2468-2478 ◽  
Author(s):  
Bernadette Klotz ◽  
D. Leo Pyle ◽  
Bernard M. Mackey

ABSTRACT A new primary model based on a thermodynamically consistent first-order kinetic approach was constructed to describe non-log-linear inactivation kinetics of pressure-treated bacteria. The model assumes a first-order process in which the specific inactivation rate changes inversely with the square root of time. The model gave reasonable fits to experimental data over six to seven orders of magnitude. It was also tested on 138 published data sets and provided good fits in about 70% of cases in which the shape of the curve followed the typical convex upward form. In the remainder of published examples, curves contained additional shoulder regions or extended tail regions. Curves with shoulders could be accommodated by including an additional time delay parameter and curves with tails shoulders could be accommodated by omitting points in the tail beyond the point at which survival levels remained more or less constant. The model parameters varied regularly with pressure, which may reflect a genuine mechanistic basis for the model. This property also allowed the calculation of (a) parameters analogous to the decimal reduction time D and z, the temperature increase needed to change the D value by a factor of 10, in thermal processing, and hence the processing conditions needed to attain a desired level of inactivation; and (b) the apparent thermodynamic volumes of activation associated with the lethal events. The hypothesis that inactivation rates changed as a function of the square root of time would be consistent with a diffusion-limited process.


2018 ◽  
Vol 31 ◽  
pp. 03002 ◽  
Author(s):  
Hadiyanto Hadiyanto

Tofu industries produce waste water containing high organic contents and suspendid solid which is harmful if directly discharged to the environment. This waste can lead to disruption of water quality and lowering the environmental carrying capacity of waters around the tofu industries. Besides, the tofu waste water still contains high nitrogen contents which can be used for microalgae growth. This study was aimed to reduce the pollution load (chemical oxygen demand-COD) of tofue wastewater by using ozone treatments and to utilize nutrients in treated tofu waste water as medium growth of microalgae. The result showed that the reduction of COD by implementation of ozone treatment followed first order kinetic. Under variation of waste concentrations between 10-40%, the degradation rate constant was in the range of 0.00237-0.0149 min-1. The microalgae was able to grow in the tofue waste medium by the growth rate constants of 0.15-0.29 day-1. This study concluded that tofu waste was highly potent for microalgae growth.


2009 ◽  
Vol 52 (12) ◽  
pp. 3668-3673 ◽  
Author(s):  
Jun Liu ◽  
Jun Hu ◽  
JinLiang He ◽  
YuanHua Lin ◽  
WangCheng Long

2012 ◽  
Vol 8 (3) ◽  
Author(s):  
Xiaoyan Dai ◽  
Chenhuan Yu ◽  
Qiaofeng Wu

Abstract Jiangpo is an increasingly popular East Asian spice which is made from Mangnolia officinalis bark and ginger juice. Since it induces bioactive compounds decomposition and has influence on final flavor and fragrance, cooking is regarded as the key operation in preparation of Jiangpo. To evaluate the bioactive compounds content changes of Jiangpo during thermal processing, kinetic parameters including reaction order, rate constant, T1/2 and activation energy of bioactive markers namely honokiol, magnolol and curcumin were determined. Cooking was set at temperatures 60, 90 and 120 °C for selected time intervals. Results displayed the thermal kinetic characteristics of the three compounds. Thermal degradation of Honokiol and magnolol both followed first order kinetic model and the loss of curcumin fitted second order. A mathematical model based on the obtained kinetic parameters has also been developed to predict the degradation of honokiol, magnolol and curcumin in non-isothermal state. All the information in this paper could contribute necessary information for optimizing the existing heat processing of Jiangpo.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mohammad Ahmadian ◽  
Sohyla Reshadat ◽  
Nader Yousefi ◽  
Seyed Hamed Mirhossieni ◽  
Mohammad Reza Zare ◽  
...  

Due to complex composition of leachate, the comprehensive leachate treatment methods have been not demonstrated. Moreover, the improper management of leachate can lead to many environmental problems. The aim of this study was application of Fenton process for decreasing the major pollutants of landfill leachate on Kermanshah city. The leachate was collected from Kermanshah landfill site and treated by Fenton process. The effect of various parameters including solution pH, Fe2+and H2O2dosage, Fe2+/H2O2molar ratio, and reaction time was investigated. The result showed that with increasing Fe2+and H2O2dosage, Fe2+/H2O2molar ratio, and reaction time, the COD, TOC, TSS, and color removal increased. The maximum COD, TOC, TSS, and color removal were obtained at low pH (pH: 3). The kinetic data were analyzed in term of zero-order, first-order, and second-order expressions. First-order kinetic model described the removal of COD, TOC, TSS, and color from leachate better than two other kinetic models. In spite of extremely difficulty of leachate treatment, the previous results seem rather encouraging on the application of Fenton’s oxidation.


1991 ◽  
Vol 274 (2) ◽  
pp. 581-585 ◽  
Author(s):  
S C Kivatinitz ◽  
A Miglio ◽  
R Ghidoni

The fate of exogenous ganglioside GM1 labelled in the sphingosine moiety, [Sph-3H]GM1, administered as a pulse, in the isolated perfused rat liver was investigated. When a non-recirculating protocol was employed, the amount of radioactivity in the liver and perfusates was found to be dependent on the presence of BSA in the perfusion liquid and on the time elapsed after the administration of the ganglioside. When BSA was added to the perfusion liquid, less radioactivity was found in the liver and more in the perfusate at each time tested, for up to 1 h. The recovery of radioactivity in the perfusates followed a complex course which can be described by three pseudo-first-order kinetic constants. The constants, in order of decreasing velocity, are interpreted as: (a) the dilution of the labelled GM1 by the constant influx of perfusion liquid; (b) the washing off of GM1 loosely bound to the surface of liver cells; (c) the release of gangliosides from the liver. Process (b) was found to be faster in the presence of BSA, probably owing to the ability of BSA to bind gangliosides. The [Sph-3H]GM1 in the liver underwent metabolism, leading to the appearance of products of anabolic (GD1a, GD1b) and catabolic (GM2, GM3) origin; GD1a appeared before GM2 and GM3 but, at times longer than 10 min, GM2 and GM3 showed more radioactivity than GD1a. At a given time the distribution of the radioactivity in the perfusates was quite different from that of the liver. In fact, after 60 min GD1a was the only metabolite present in any amount, the other being GM3, the quantity of which was small. This indicates that the liver is able to release newly synthesized gangliosides quite specifically. When a recirculating protocol was used, there were more catabolites and less GD1a than with the non-recirculating protocol. A possible regulatory role of ganglioside re-internalization on their own metabolism in the liver is postulated.


Sign in / Sign up

Export Citation Format

Share Document