Effect of facial cooling on tympanic temperature

1997 ◽  
Vol 6 (1) ◽  
pp. 46-51 ◽  
Author(s):  
KA Thomas ◽  
MV Savage ◽  
GL Brengelmann

BACKGROUND: In clinical practice, tympanic temperature is used as an estimate of body temperature. Theoretically, temperature recorded directly from the tympanum reflects the temperature of arterial blood circulating to the brain. However, some studies do not support this connection. Ear-based thermometers in clinical use, commonly called tympanic thermometers, detect heat emission from the aural canal and tympanum. Dissociation of core body temperature and tympanic temperature would suggest that factors other than arterial blood perfusion affect tympanic temperature. METHODS: In a controlled laboratory experiment with four adult volunteers, esophageal and tympanic temperatures were recorded repeatedly at 2-minute intervals during whole-body heating and cooling. Facial cooling, produced by a small electrical fan, was used in three subjects. RESULTS: The gradient between tympanic and esophageal temperature was inconsistent across subjects, with tympanic temperature both higher and lower than esophageal temperature. Correlations between esophageal and tympanic temperature varied widely across subjects. Fanning the face produced a decrease in tympanic temperature without an accompanying decline in esophageal temperature. CONCLUSIONS: Facial cooling in the form of fanning altered the relationship between tympanic and esophageal temperature. This result suggests the possible lowering of tympanic temperature by cooled facial venous blood flow. Use of tympanic temperature in circumstances in which facial temperature may be different from that of other regions of the body deserves further study.

1996 ◽  
Vol 80 (4) ◽  
pp. 1233-1239 ◽  
Author(s):  
K. T. Sato ◽  
N. L. Kane ◽  
G. Soos ◽  
C. V. Gisolfi ◽  
N. Kondo ◽  
...  

Controversies surrounding tympanic temperature (Tty) itself and techniques for measuring it have dampened the potential usefulness of Tty in determining core temperature (operationally defined here as the body temperature taken at a deep body site). The present study was designed to address the following questions. 1) Can a tympanic membrane probe be made that is safer and more reliable than its predecessors? 2) Why is the effect of facial cooling and heating on Tty so inconsistent in reports from different laboratories? 3) Is Tty still useful as a measure of core temperature? Data from this study, obtained with a modified thermocouple probe, suggest that the widely reported facial skin cooling effect on Tty is most probably due to thermal contamination from the surrounding ear canal wall and/or suboptimal contact of the probe sensor with the tympanic membrane because 1) Tty that fell during facial cooling was increased to the precooling level by the repositioning of the probe sensor; 2) Tty determined by using a probe with a larger sensor area (the sensor soldered to a steel wire ring)tended to fall in response to facial cooling, whereas Tty determined with a thermally insulated probe ring did not; and 3) Tty obtained under careful positioning of the insulated probe was relatively insensitive to facial cooling or heating. Because Tty was practically identical to esophageal temperature (Tes) in the steady state, i.e., 36.83 +/- 0.20 (SD) degrees C for Tty and 36.87 +/- 0.16 degrees C for Tes at room temperature (n = 11), and because facial cooling had little effect on both Tty and Tes (36.86 +/- 0.17 degrees C for Tty and 36.86 +/- 0.26 degrees C for Tes during facial or scalp skin cooling), we support the postulate that Tty is a good measure of core temperature. The temperature transient in response to foot warming was detected 5 min (n = 2) faster with Tty than with Tes. Thus, with further improvements in the design of the probe. Tty can become a standard for determination of core body temperature.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Dikmen S ◽  
Davila KMS ◽  
Rodriquez E ◽  
Scheffler TL ◽  
Oltenacu PA ◽  
...  

In cattle, core body temperature can be used as an important indicator of heat stress level. However, accurately recording core body temperature can be difficult and labor intensive. The objectives of the current study were 1) to compare the recorded tympanic and tail body temperature measurements in steers and 2) to determine the body temperature change of Angus and Brahman steers in a hot and humid environment. Data was analyzed using a repeated measure model where repeated measures were hourly tympanic and tail temperatures and their difference for individual steers during the day of the experiment. There was a significant breed effect (P=0.01), hour (P<0.0001) and breed by hour interaction (P<0.0001) for the tympanic temperature. Brahman steers, which are known to have superior thermotolerance, maintained a lower body temperature than the Angus steers during the afternoon under grazing conditions. In the Brahman steers there was only a minimal increase in the body temperature throughout the day, an evidence of the thermotolerance ability of the breed. In the Angus steers, which experienced an increase in their body temperature from hour to hour with a peak around 1600 hour; there was a significant difference between the tympanic and tail temperature during the times when the body temperature as measured by the tympanic recordings was the highest (1300 to 1700 hour). Our results indicate that the tympanic temperature can be used to accurately and continuously monitor core body temperature in a natural environment for up to several days and without disturbing the animal.


2019 ◽  
Vol 1 (11(41)) ◽  
pp. 26-31
Author(s):  
Хоботова Наталія Володимирівна ◽  
Єхалов Василій Вталійович

Compression asphyxia is a type of mechanical asphyxia when breathing stops with external pressure on the body, which leads to the absence of respiratory movements and disrupts venous return from the head. With a strong compression of the chest, a reflex spasm of the glottis occurs, which contributes to an increase in intrathoracic pressure, reverse venous blood flow and an obstruction of venous flow to the heart occur. A sharp increase in intracranial pressure and venous congestive congestion / hemorrhage deepen central respiratory failure. Mild degree: mental agitation; puffy face, slight cyanosis; individual conjunctival petechiae; tachypnea. Medium degree: light or heavy stunning, lost orientation; the face is puffy, cyanotic; swelling of the cervical veins, acrocyanosis; multiple petechiae that spread across the face, neck, conjunctiva of the eyes, inspiratory dyspnea, visual impairment. Severe degree: stupor or coma, sharp cyanosis of the whole body, exophthalmos; swelling of the face, neck and shoulder girdle, arms, multiple petechiae of the face, neck, arms, legs, conjunctiva of the eyes, swelling of the cervical veins, cyanosis and edema of the upper half of the body; superficial breathing, frequent, in the absence of treatment passes to agonal and apnea. Intensive care includes analgesia, oxygenation or mechanical ventilation, anticonvulsant, dehydration and decongestant therapy, prevention of acute kidney damage, DIC, septic complications, and treatment of posthypoxic encephalopathy.


1988 ◽  
Vol 66 (12) ◽  
pp. 2782-2790 ◽  
Author(s):  
R. W. Davis ◽  
T. M. Williams ◽  
J. A. Thomas ◽  
R. A. Kastelein ◽  
L. H. Cornell

The purpose of this study was to develop a method to clean and rehabilitate sea otters (Enhydra lutris) that might become contaminated during an oil spill and to determine which physiological and behavioral factors were important in restoring the insulation provided by the fur. Tests were conducted on 12 sea otters captured in Alaska and brought to the Sea World Research Institute in San Diego. Measurements of average metabolic rate, core body temperature, behavior, and squalene (the major lipid of sebum) concentration on the fur were made under three conditions: (i) before oiling (base line), (ii) 1–3 days after 20% of the body surface area was covered with fresh crude oil, and (iii) after cleaning. Under base-line conditions in water at 13 °C, average metabolic rate was 8.0 W/kg, core body temperature was 38.9 °C, and whole body thermal conductance was 10.7 W/(m2∙ °C). Otters spent 35% of their time grooming, 45% resting, 10% swimming, and 10% feeding. The squalene concentration on the fur averaged 3.7 mg/g fur. Oiling increased thermal conductance 1.8 times. To compensate for the loss of insulation and maintain a normal core body temperature (39 °C), the otters increased average metabolic rate (1.9 times) through voluntary activity and shivering; the time spent grooming and swimming increased 1.7 times. Using Dawn detergent, we were able to clean the oiled fur during 40 min of washing and rinsing. Grooming activity by the otters was essential for restoring the water-repellent quality of the fur. Core body temperature, average metabolic rate, and thermal conductance returned to base-line levels 3–6 days after cleaning. Squalene was removed by cleaning and did not return to normal levels in the oiled area after 7 days. Veterinary care was important to keep the otters healthy. At least 1–2 weeks should be allowed for otters to restore the insulation of their fur and for recovery from the stress of oiling and cleaning.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2885 ◽  
Author(s):  
Hsuan-Yu Chen ◽  
Andrew Chen ◽  
Chiachung Chen

Many types of thermometers have been developed to measure body temperature. Infrared thermometers (IRT) are fast, convenient and ease to use. Two types of infrared thermometers are uses to measure body temperature: tympanic and forehead. With the spread of COVID-19 coronavirus, forehead temperature measurement is used widely to screen people for the illness. The performance of this type of device and the criteria for screening are worth studying. This study evaluated the performance of two types of tympanic infrared thermometers and an industrial infrared thermometer. The results showed that these infrared thermometers provide good precision. A fixed offset between tympanic and forehead temperature were found. The measurement values for wrist temperature show significant offsets with the tympanic temperature and cannot be used to screen fevers. The standard operating procedure (SOP) for the measurement of body temperature using an infrared thermometer was proposed. The suggestion threshold for the forehead temperature is 36 °C for screening of fever. The body temperature of a person who is possibly ill is then measured using a tympanic infrared thermometer for the purpose of a double check.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2316
Author(s):  
Daniel Mota-Rojas ◽  
Dehua Wang ◽  
Cristiane Gonçalves Titto ◽  
Jocelyn Gómez-Prado ◽  
Verónica Carvajal-de la Fuente ◽  
...  

Body-temperature elevations are multifactorial in origin and classified as hyperthermia as a rise in temperature due to alterations in the thermoregulation mechanism; the body loses the ability to control or regulate body temperature. In contrast, fever is a controlled state, since the body adjusts its stable temperature range to increase body temperature without losing the thermoregulation capacity. Fever refers to an acute phase response that confers a survival benefit on the body, raising core body temperature during infection or systemic inflammation processes to reduce the survival and proliferation of infectious pathogens by altering temperature, restriction of essential nutrients, and the activation of an immune reaction. However, once the infection resolves, the febrile response must be tightly regulated to avoid excessive tissue damage. During fever, neurological, endocrine, immunological, and metabolic changes occur that cause an increase in the stable temperature range, which allows the core body temperature to be considerably increased to stop the invasion of the offending agent and restrict the damage to the organism. There are different metabolic mechanisms of thermoregulation in the febrile response at the central and peripheral levels and cellular events. In response to cold or heat, the brain triggers thermoregulatory responses to coping with changes in body temperature, including autonomic effectors, such as thermogenesis, vasodilation, sweating, and behavioral mechanisms, that trigger flexible, goal-oriented actions, such as seeking heat or cold, nest building, and postural extension. Infrared thermography (IRT) has proven to be a reliable method for the early detection of pathologies affecting animal health and welfare that represent economic losses for farmers. However, the standardization of protocols for IRT use is still needed. Together with the complete understanding of the physiological and behavioral responses involved in the febrile process, it is possible to have timely solutions to serious problem situations. For this reason, the present review aims to analyze the new findings in pathophysiological mechanisms of the febrile process, the heat-loss mechanisms in an animal with fever, thermoregulation, the adverse effects of fever, and recent scientific findings related to different pathologies in farm animals through the use of IRT.


2004 ◽  
Vol 96 (2) ◽  
pp. 428-437 ◽  
Author(s):  
Gabriel Laszlo

The measurement of cardiac output was first proposed by Fick, who published his equation in 1870. Fick's calculation called for the measurement of the contents of oxygen or CO2 in pulmonary arterial and systemic arterial blood. These values could not be determined directly in human subjects until the acceptance of cardiac catheterization as a clinical procedure in 1940. In the meanwhile, several attempts were made to perfect respiratory methods for the indirect determination of blood-gas contents by respiratory techniques that yielded estimates of the mixed venous and pulmonary capillary gas pressures. The immediate uptake of nonresident gases can be used in a similar way to calculate cardiac output, with the added advantage that they are absent from the mixed venous blood. The fact that these procedures are safe and relatively nonintrusive makes them attractive to physiologists, pharmacologists, and sports scientists as well as to clinicians concerned with the physiopathology of the heart and lung. This paper outlines the development of these techniques, with a discussion of some of the ways in which they stimulated research into the transport of gases in the body through the alveolar membrane.


From the fact that no carbonic acid gas is given out by venous blood when that fluid is subjected to the action of the air-pump, former experimentalists had inferred that this blood contains no carbonic acid. The author of the present paper contends that this is an erroneous inference; first, by showing that serum, which had been made to absorb a considerable quantity of this gas, does not yield it upon the removal of the atmospheric pressure; and next, by adducing several experiments in proof of the strong attraction exerted on carbonic acid both by hydrogen and by oxygen gases, which were found to absorb it readily through the medium of moistened membrane. By means of a peculiar apparatus, consisting of a double-necked bottle, to which a set of bent tubes were adapted, he ascertained that venous blood, agitated with pure hydrogen gas, and allowed to remain for an hour in contact with it, imparts to that gas a considerable quantity of carbonic acid. The same result had, indeed, been obtained, in a former experiment, by the simple application of heat to venous blood confined under hydrogen gas; but on account of the possible chemical agency of heat, the inference drawn from that experiment is less conclusive than from experiments in which the air-pump alone is employed. The author found that, in like manner, atmospheric air, by remaining, for a sufficient time, in contact with venous blood, on the application of the air-pump, acquires carbonic acid. The hypothesis that the carbon of the blood attracts the oxygen of the air into the fluid, and there combines with it, and that the carbonic acid thus formed is afterwards exhaled, appears to be inconsistent with the fact that all acids, and carbonic acid more especially, impart to the blood a black colour; whereas the immediate effect of exposing venous blood to atmospheric air, or to oxygen gas, is a change of colour from a dark to a bright scarlet, implying its conversion from the venous to the arterial character: hence the author infers that the acid is not formed during the experiment in question, but already exists in the venous blood, and is extracted from it by the atmospheric air. Similar experiments made with oxygen gas, in place of atmospheric air, were attended with the like results, but in a more striking degree and tend therefore to corroborate the views entertained by the author of the theory of respiration. According to these views, it is neither in the lungs, nor generally in the course of the circulation, but only during its passage through the capillary system of vessels, that the blood undergoes the change from arterial to venous; a change consisting in the formation of carbonic acid, by the addition of particles of carbon derived from the solid textures of the body, and which had combined with the oxygen supplied by the arterial blood: and it is by this combination that heat is evolved, as well as a dark colour imparted to the blood. The author ascribes, however, the bright red colour of arterial blood, not to the action of oxygen, which is of itself completely inert as a colouring agent, but to that of the saline ingredients naturally contained in healthy blood. On arriving at the lungs, the first change induced on the blood is effected by the oxygen of the atmospheric air, and consists in the removal of the carbonic acid, which had been the source of the dark colour of the venous blood; and the second consists in the attraction by the blood of a portion of oxygen, which it absorbs from the air, and which takes the place of the carbonic acid. The peculiar texture of the lungs, and the elevation of temperature in warm-blooded animals, concur in promoting the rapid production of these changes.


Author(s):  
Abinand Manorama ◽  
Tamara Reid Bush

Pressure ulcers have been a concern in healthcare settings, with more than 50% of bedridden or wheelchair-bound patients being affected [1]. Pressure ulcers typically occur on a region of the body that experiences forces from an external structure (e.g. bed, wheelchair). Researchers believe that such forces cause a decrease in blood flow, which results in tissue necrosis, causing pressure ulcers [2].


Sign in / Sign up

Export Citation Format

Share Document