scholarly journals Comparison of Tympanic and Tail Temperatures in Angus and Brahman Steers

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Dikmen S ◽  
Davila KMS ◽  
Rodriquez E ◽  
Scheffler TL ◽  
Oltenacu PA ◽  
...  

In cattle, core body temperature can be used as an important indicator of heat stress level. However, accurately recording core body temperature can be difficult and labor intensive. The objectives of the current study were 1) to compare the recorded tympanic and tail body temperature measurements in steers and 2) to determine the body temperature change of Angus and Brahman steers in a hot and humid environment. Data was analyzed using a repeated measure model where repeated measures were hourly tympanic and tail temperatures and their difference for individual steers during the day of the experiment. There was a significant breed effect (P=0.01), hour (P<0.0001) and breed by hour interaction (P<0.0001) for the tympanic temperature. Brahman steers, which are known to have superior thermotolerance, maintained a lower body temperature than the Angus steers during the afternoon under grazing conditions. In the Brahman steers there was only a minimal increase in the body temperature throughout the day, an evidence of the thermotolerance ability of the breed. In the Angus steers, which experienced an increase in their body temperature from hour to hour with a peak around 1600 hour; there was a significant difference between the tympanic and tail temperature during the times when the body temperature as measured by the tympanic recordings was the highest (1300 to 1700 hour). Our results indicate that the tympanic temperature can be used to accurately and continuously monitor core body temperature in a natural environment for up to several days and without disturbing the animal.

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2885 ◽  
Author(s):  
Hsuan-Yu Chen ◽  
Andrew Chen ◽  
Chiachung Chen

Many types of thermometers have been developed to measure body temperature. Infrared thermometers (IRT) are fast, convenient and ease to use. Two types of infrared thermometers are uses to measure body temperature: tympanic and forehead. With the spread of COVID-19 coronavirus, forehead temperature measurement is used widely to screen people for the illness. The performance of this type of device and the criteria for screening are worth studying. This study evaluated the performance of two types of tympanic infrared thermometers and an industrial infrared thermometer. The results showed that these infrared thermometers provide good precision. A fixed offset between tympanic and forehead temperature were found. The measurement values for wrist temperature show significant offsets with the tympanic temperature and cannot be used to screen fevers. The standard operating procedure (SOP) for the measurement of body temperature using an infrared thermometer was proposed. The suggestion threshold for the forehead temperature is 36 °C for screening of fever. The body temperature of a person who is possibly ill is then measured using a tympanic infrared thermometer for the purpose of a double check.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2316
Author(s):  
Daniel Mota-Rojas ◽  
Dehua Wang ◽  
Cristiane Gonçalves Titto ◽  
Jocelyn Gómez-Prado ◽  
Verónica Carvajal-de la Fuente ◽  
...  

Body-temperature elevations are multifactorial in origin and classified as hyperthermia as a rise in temperature due to alterations in the thermoregulation mechanism; the body loses the ability to control or regulate body temperature. In contrast, fever is a controlled state, since the body adjusts its stable temperature range to increase body temperature without losing the thermoregulation capacity. Fever refers to an acute phase response that confers a survival benefit on the body, raising core body temperature during infection or systemic inflammation processes to reduce the survival and proliferation of infectious pathogens by altering temperature, restriction of essential nutrients, and the activation of an immune reaction. However, once the infection resolves, the febrile response must be tightly regulated to avoid excessive tissue damage. During fever, neurological, endocrine, immunological, and metabolic changes occur that cause an increase in the stable temperature range, which allows the core body temperature to be considerably increased to stop the invasion of the offending agent and restrict the damage to the organism. There are different metabolic mechanisms of thermoregulation in the febrile response at the central and peripheral levels and cellular events. In response to cold or heat, the brain triggers thermoregulatory responses to coping with changes in body temperature, including autonomic effectors, such as thermogenesis, vasodilation, sweating, and behavioral mechanisms, that trigger flexible, goal-oriented actions, such as seeking heat or cold, nest building, and postural extension. Infrared thermography (IRT) has proven to be a reliable method for the early detection of pathologies affecting animal health and welfare that represent economic losses for farmers. However, the standardization of protocols for IRT use is still needed. Together with the complete understanding of the physiological and behavioral responses involved in the febrile process, it is possible to have timely solutions to serious problem situations. For this reason, the present review aims to analyze the new findings in pathophysiological mechanisms of the febrile process, the heat-loss mechanisms in an animal with fever, thermoregulation, the adverse effects of fever, and recent scientific findings related to different pathologies in farm animals through the use of IRT.


Author(s):  
Rajnandini Singha ◽  
Amazing Grace Siangshai ◽  
Jashlyn Lijo

Hypothermia, described as a core body temperature of < 95%, is associated with ECG alteration abnormalities. Sinus bradycardia occurs when the body temperature drops below 90°F, and is correlated with gradual prolongation of the PR interval, QRS complex, QT interval. It can progress to ventricular and atrial fibrillation at a temperature reaching 89°F, which can lead to left ventricular dysfunction. Hypothermia is connected to the osborn waves, which at the end of the QRS complex consist of additional deflection. The inferior and lateral precordial leads are seen by Osborn waves, also known as J waves, Camel hump waves and hypothermic waves. As the body temperature decreases, it becomes more pronounced and a gradual expansion of the QRS complex raises the likelihood of ventricular fibrillation causing ventricle dysfunction.


2017 ◽  
Vol 60 (3) ◽  
pp. 19-25
Author(s):  
Sławomir Kujawski ◽  
Joanna Słomko ◽  
Monika Zawadka-Kunikowska ◽  
Mariusz Kozakiewicz ◽  
Jacek J. Klawe ◽  
...  

Abstract Changes observed in the core body temperature of divers are the result of a multifaceted response from the body to the change of the external environment. In response to repeated activities, there may be a chronic, physiological adaptation of the body’s response system. This is observed in the physiology of experienced divers while diving. The purpose of this study is to determine the immediate and delayed effects of hyperbaric exposure on core temperature, as well as its circadian changes in a group of three experienced divers. During compression at 30 and 60 meters, deep body temperature values tended to increase. Subsequently, deep body temperature values showed a tendency to decrease during decompression. All differences in core temperature values obtained by the group of divers at individual time points in this study were not statistically significant.


2020 ◽  
Vol 18 (3) ◽  
Author(s):  
Seyedeh Somayeh Razavi ◽  
Amirabbas Monazzami ◽  
Zahra Nikosefat

Background: Stressful environments, especially air temperature, have significant effects on human physiological responses to physical activity. Objectives: The current study aimed to determine the effects of pre-cooling and per-cooling on neural, physiological, and functional responses in active young girls. Methods: Twelve active girls (age 24.6 ± 1.4, weight 55.46 ± 8.18, height 165.1 ± 5.91) were tested in three separate sessions with intervals of three days between each session. All subjects performed the Balke test in three groups either without an ice vest (control and pre-cooling) or with an ice vest (per-cooling) in each session, randomly. Pre-cooling was applied with an ice vest for 30 min just before the test, while per-cooling was used with an ice vest from the beginning of the test to exhaustion. A Buerer FT-70 digital thermometer, polar-FT60 heart rate monitoring, Microlife blood pressure monitoring, and ELISA technique were used to measure core body temperature, heart rate, blood pressure, dopamine, cortisol, and lactate dehydrogenase, respectively. Two-way repeated-measures ANOVA was applied to analyze the data with a confidence interval of 95%. Results: The heart rate and core body temperature significantly decreased at the end of the test in the pre-cooling and per-cooling groups (P < 0.05). There was an improved performance with an increase in Tmax in the per-cooling group compared to the control group (P < 0.05) although this difference was not significant in the pre-cooling group compared to the control group (P > 0.05). Dopamine, cortisol, and lactate dehydrogenize increased in the groups in comparison with the pretest (P < 0.05) even though these differences were not significant in the comparison between the groups (P > 0.05). Conclusion: The findings suggest that pre-cooling and per-cooling could be used as a beneficial method to improve performance due to not only a decrease in core body temperature and heart rate but also an increase in the level of dopamine and cortisol. Moreover, per-cooling was more effective than pre-cooling to increase performance.


2002 ◽  
Vol 227 (6) ◽  
pp. 382-388 ◽  
Author(s):  
Fernando Catalina ◽  
Leon Milewich ◽  
William Frawley ◽  
Vinay Kumar ◽  
Michael Bennett

Dietary dehydroepiandrosterone (DHEA) reduces food intake in mice, and this response is under genetic control. Moreover, both food restriction and DHEA can prevent or ameliorate certain diseases and mediate other biological effects. Mice fed DHEA (0.45% w/w of food) and mice pair-fed to these mice (food restricted) for 8 weeks were tested for changes in body temperature. DHEA was more efficient than food restriction alone in causing hypothermia. DHEA injected intraperitoneally also induced hypothermia that reached a nadir at 1 to 2 hr, and slowly recovered by 20 to 24 hr. This effect was dose dependent (0.5–50 mg). Each mouse strain tested (four) was susceptible to this effect, suggesting that the genetics differ for induction of hypophagia and induction of hypothermia. Because serotonin and dopamine can regulate (decrease) body temperature, we treated mice with haloperidol (dopamine receptor antagonist), 5,7-dihydroxytryptamine (serotonin production inhibitor), or ritanserin (serotonin receptor antagonist) prior to injection of DHEA. All of these agents increased rather than decreased the hypothermic effects of DHEA. DHEA metabolites that are proximate (5-androstene-3β, 17β-diol and androstenedione) or further downstream (estradiol-17β) were much less effective than DHEA in inducing hypothermia. However, the DHEA analog, 16α-chloroepiandrosterone, was as active as DHEA. Thus, DHEA administered parentally seems to act directly on temperature-regulating sites in the body. These results suggest that DHEA induces hypothermia independent of its ability to cause food restriction, to affect serotonin or dopamine functions, or to act via its downstream steroid metabolites.


2017 ◽  
Vol 13 (12) ◽  
pp. 20170521 ◽  
Author(s):  
Shane K. Maloney ◽  
Maija K. Marsh ◽  
Steven R. McLeod ◽  
Andrea Fuller

An increase in variation in the 24 h pattern of body temperature (heterothermy) in mammals can be induced by energy and water deficits. Since performance traits such as growth and reproduction also are impacted by energy and water balance, we investigated whether the characteristics of the body temperature rhythm provide an indication of the reproductive success of an individual. We show that the amplitude of the daily rhythm of body temperature in wild rabbits ( Oryctolagus cuniculus ) prior to breeding is inversely related to the number of pregnancies in the subsequent seven months, while the minimum daily body temperature is positively correlated to the number of pregnancies. Because reproductive output could be predicted from characteristics of the core body temperature rhythm prior to the breeding season, we propose that the pattern of the 24 h body temperature rhythm could provide an index of animal fitness in a given environment.


2015 ◽  
Vol 119 (12) ◽  
pp. 1400-1410 ◽  
Author(s):  
Yeonjoo Yoo ◽  
Michelle LaPradd ◽  
Hannah Kline ◽  
Maria V. Zaretskaia ◽  
Abolhassan Behrouzvaziri ◽  
...  

The importance of exercise is increasingly emphasized for maintaining health. However, exercise itself can pose threats to health such as the development of exertional heat shock in warm environments. Therefore, it is important to understand how the thermoregulation system adjusts during exercise and how alterations of this can contribute to heat stroke. To explore this we measured the core body temperature of rats ( Tc) running for 15 min on a treadmill at various speeds in two ambient temperatures ( Ta = 25°C and 32°C). We assimilated the experimental data into a mathematical model that describes temperature changes in two compartments of the body, representing the muscles and the core. In our model the core body generates heat to maintain normal body temperature, and dissipates it into the environment. The muscles produce additional heat during exercise. According to the estimation of model parameters, at Ta = 25°C, the heat generation in the core was progressively reduced with the increase of the treadmill speed to compensate for a progressive increase in heat production by the muscles. This compensation was ineffective at Ta = 32°C, which resulted in an increased rate of heat accumulation with increasing speed, as opposed to the Ta = 25°C case. Interestingly, placing an animal on a treadmill increased heat production in the muscles even when the treadmill speed was zero. Quantitatively, this “ready-to-run” phenomenon accounted for over half of the heat generation in the muscles observed at maximal treadmill speed. We speculate that this anticipatory response utilizes stress-related circuitry.


2008 ◽  
Vol 295 (6) ◽  
pp. R1874-R1881 ◽  
Author(s):  
Feng Chen ◽  
Melissa Dworak ◽  
Yuliang Wang ◽  
Joo Lee Cham ◽  
Emilio Badoer

The hypothalamic paraventricular nucleus (PVN) is an important integrative center in the brain. In the present study, we investigated whether the PVN is a key region in the mesenteric vasoconstriction that normally accompanies an increase in core body temperature. Anesthetized rats were monitored for blood pressure, heart rate, mesenteric blood flow, and vascular conductance. In control rats, elevation of core body temperature to 41°C had no significant effect on blood pressure, increased heart rate, and reduced mesenteric blood flow by 21%. In a separate group of rats, muscimol was microinjected bilaterally (1 nmol/side) into the PVN. Compared with the control group, there was no significant difference in the blood pressure and heart rate responses elicited by the increase in core body temperature. In contrast to control animals, however, mesenteric blood flow did not fall in the muscimol-treated rats in response to the elevation in core body temperature. In a separate group, in which muscimol was microinjected into regions outside the PVN, elevating core body temperature elicited the normal reduction in mesenteric blood flow. The results suggest that the PVN may play a key role in the reflex decrease in mesenteric blood flow elicited by hyperthermia.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Amanda McDonald ◽  
Rebekah Stubbs ◽  
Prince Lartey ◽  
Shaeleigh Kokot

Environmental injuries are an important type of sport  injury to study as they can occur year-round, through a variety of activities, and occur to a broad range of athletic populations. Hyperthermia (a core body temperature above 38.5°C) and hypothermia (a core body temperature below 35°C) are two common environmental injuries that can be life threatening. This research paper examines the mechanisms of how and why these injuries occur and the effect they have on the body. This paper also outlines preventative measures to take, including identifying internal and external predisposing risk factors, as well as ways to treat hyperthermia and hypothermia to return an athlete back to play.


Sign in / Sign up

Export Citation Format

Share Document