An Evaluation of the Validity and Reliability of the Face Mask Use Scale's Korean Version among Community-Dwelling Adults

2021 ◽  
Vol 51 (5) ◽  
pp. 549
Author(s):  
Kyungmi Lee ◽  
Nayeon Shin ◽  
Younhee Kang
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam Catching ◽  
Sara Capponi ◽  
Ming Te Yeh ◽  
Simone Bianco ◽  
Raul Andino

AbstractCOVID-19’s high virus transmission rates have caused a pandemic that is exacerbated by the high rates of asymptomatic and presymptomatic infections. These factors suggest that face masks and social distance could be paramount in containing the pandemic. We examined the efficacy of each measure and the combination of both measures using an agent-based model within a closed space that approximated real-life interactions. By explicitly considering different fractions of asymptomatic individuals, as well as a realistic hypothesis of face masks protection during inhaling and exhaling, our simulations demonstrate that a synergistic use of face masks and social distancing is the most effective intervention to curb the infection spread. To control the pandemic, our models suggest that high adherence to social distance is necessary to curb the spread of the disease, and that wearing face masks provides optimal protection even if only a small portion of the population comply with social distance. Finally, the face mask effectiveness in curbing the viral spread is not reduced if a large fraction of population is asymptomatic. Our findings have important implications for policies that dictate the reopening of social gatherings.


2021 ◽  
pp. 194173812110282
Author(s):  
Ayami Yoshihara ◽  
Erin E. Dierickx ◽  
Gabrielle J. Brewer ◽  
Yasuki Sekiguchi ◽  
Rebecca L. Stearns ◽  
...  

Background: While increased face mask use has helped reduce COVID-19 transmission, there have been concerns about its influence on thermoregulation during exercise in the heat, but consistent, evidence-based recommendations are lacking. Hypothesis: No physiological differences would exist during low-to-moderate exercise intensity in the heat between trials with and without face masks, but perceptual sensations could vary. Study Design: Crossover study. Level of Evidence: Level 2. Methods: Twelve physically active participants (8 male, 4 female; age = 24 ± 3 years) completed 4 face mask trials and 1 control trial (no mask) in the heat (32.3°C ± 0.04°C; 54.4% ± 0.7% relative humidity [RH]). The protocol was 60 minutes of walking and jogging between 35% and 60% of relative VO2max. Rectal temperature (Trec), heart rate (HR), temperature and humidity inside and outside of the face mask (Tmicro_in, Tmicro_out, RHmicro_in, RHmicro_out) and perceptual variables (rating of perceived exertion (RPE), thermal sensation, thirst sensation, fatigue level, and overall breathing discomfort) were monitored throughout all trials. Results: Mean Trec and HR increased at 30- and 60-minute time points compared with 0-minute time points, but no difference existed between face mask trials and control trials ( P > 0.05). Mean Tmicro_in, RHmicro_in, and humidity difference inside and outside of the face mask (ΔRHmicro) were significantly different between face mask trials ( P < 0.05). There was no significant difference in perceptual variables between face mask trials and control trials ( P > 0.05), except overall breathing discomfort ( P < 0.01). Higher RHmicro_in, RPE, and thermal sensation significantly predicted higher overall breathing discomfort ( r2 = 0.418; P < 0.01). Conclusion: Face mask use during 60 minutes of low-to-moderate exercise intensity in the heat did not significantly affect Trec or HR. Although face mask use may affect overall breathing discomfort due to the changes in the face mask microenvironment, face mask use itself did not cause an increase in whole body thermal stress. Clinical Relevance: Face mask use is feasible and safe during exercise in the heat, at low-to-moderate exercise intensities, for physically active, healthy individuals.


2021 ◽  
Vol 11 (11) ◽  
pp. 4829
Author(s):  
Vojtech Chmelík ◽  
Daniel Urbán ◽  
Lukáš Zelem ◽  
Monika Rychtáriková

In this paper, with the aim of assessing the deterioration of speech intelligibility caused by a speaker wearing a mask, different face masks (surgical masks, FFP2 mask, homemade textile-based protection and two kinds of plastic shields) are compared in terms of their acoustic filtering effect, measured by placing the mask on an artificial head/mouth simulator. For investigating the additional effects on the speaker’s vocal output, speech was also recorded while people were reading a text when wearing a mask, and without a mask. In order to discriminate between effects of acoustic filtering by the mask and mask-induced effects of vocal output changes, the latter was monitored by measuring vibrations at the suprasternal notch, using an attached accelerometer. It was found that when wearing a mask, people tend to slightly increase their voice level, while when wearing plastic face shield, they reduce their vocal power. Unlike the Lombard effect, no significant change was found in the spectral content. All face mask and face shields attenuate frequencies above 1–2 kHz. In addition, plastic shields also increase frequency components to around 800 Hz, due to resonances occurring between the face and the shield. Finally, special attention was given to the Slavic languages, in particular Slovak, which contain a large variety of sibilants. Male and female speech, as well as texts with and without sibilants, was compared.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 462
Author(s):  
Archana R. Deokar ◽  
Ilana Perelshtein ◽  
Melissa Saibene ◽  
Nina Perkas ◽  
Paride Mantecca ◽  
...  

Simultaneous water and ethanol-based synthesis and coating of copper and zinc oxide (CuO/ZnO) nanoparticles (NPs) on bandages was carried out by ultrasound irradiation. High resolution-transmission electron microscopy demonstrated the effects of the solvent on the particle size and shape of metal oxide NPs. An antibacterial activity study of metal-oxide-coated bandages was carried out against Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). CuO NP-coated bandages made from both water and ethanol demonstrated complete killing of S. aureus and E. coli bacteria within 30 min., whereas ZnO NP-coated bandages demonstrated five-log reductions in viability for both kinds of bacteria after 60 min of interaction. Further, the antibacterial mechanism of CuO/ZnO NP-coated bandages is proposed here based on electron spin resonance studies. Nanotoxicology investigations were conducted via in vivo examinations of the effect of the metal-oxide bandages on frog embryos (teratogenesis assay—Xenopus). The results show that water-based coatings resulted in lesser impacts on embryo development than the ethanol-based ones. These bandages should therefore be considered safer than the ethanol-based ones. The comparison between the toxicity of the metal oxide NPs prepared in water and ethanol is of great importance, because water will replace ethanol for bulk scale synthesis of metal oxide NPs in commercial companies to avoid further ignition problems. The novelty and importance of this manuscript is avoiding the ethanol in the typical water:ethanol mixture as the solvent for the preparation of metal oxide NPs. Ethanol is ignitable, and commercial companies are trying the evade its use. This is especially important these days, as the face mask produced by sonochemistry (SONOMASK) is being sold all over the world by SONOVIA, and it is coated with ZnO.


2021 ◽  
Vol 11 (8) ◽  
pp. 3495
Author(s):  
Shabir Hussain ◽  
Yang Yu ◽  
Muhammad Ayoub ◽  
Akmal Khan ◽  
Rukhshanda Rehman ◽  
...  

The spread of COVID-19 has been taken on pandemic magnitudes and has already spread over 200 countries in a few months. In this time of emergency of COVID-19, especially when there is still a need to follow the precautions and developed vaccines are not available to all the developing countries in the first phase of vaccine distribution, the virus is spreading rapidly through direct and indirect contacts. The World Health Organization (WHO) provides the standard recommendations on preventing the spread of COVID-19 and the importance of face masks for protection from the virus. The excessive use of manual disinfection systems has also become a source of infection. That is why this research aims to design and develop a low-cost, rapid, scalable, and effective virus spread control and screening system to minimize the chances and risk of spread of COVID-19. We proposed an IoT-based Smart Screening and Disinfection Walkthrough Gate (SSDWG) for all public places entrance. The SSDWG is designed to do rapid screening, including temperature measuring using a contact-free sensor and storing the record of the suspected individual for further control and monitoring. Our proposed IoT-based screening system also implemented real-time deep learning models for face mask detection and classification. This module classified individuals who wear the face mask properly, improperly, and without a face mask using VGG-16, MobileNetV2, Inception v3, ResNet-50, and CNN using a transfer learning approach. We achieved the highest accuracy of 99.81% while using VGG-16 and the second highest accuracy of 99.6% using MobileNetV2 in the mask detection and classification module. We also implemented classification to classify the types of face masks worn by the individuals, either N-95 or surgical masks. We also compared the results of our proposed system with state-of-the-art methods, and we highly suggested that our system could be used to prevent the spread of local transmission and reduce the chances of human carriers of COVID-19.


2021 ◽  
Vol 13 (12) ◽  
pp. 6900
Author(s):  
Jonathan S. Talahua ◽  
Jorge Buele ◽  
P. Calvopiña ◽  
José Varela-Aldás

In the face of the COVID-19 pandemic, the World Health Organization (WHO) declared the use of a face mask as a mandatory biosafety measure. This has caused problems in current facial recognition systems, motivating the development of this research. This manuscript describes the development of a system for recognizing people, even when they are using a face mask, from photographs. A classification model based on the MobileNetV2 architecture and the OpenCv’s face detector is used. Thus, using these stages, it can be identified where the face is and it can be determined whether or not it is wearing a face mask. The FaceNet model is used as a feature extractor and a feedforward multilayer perceptron to perform facial recognition. For training the facial recognition models, a set of observations made up of 13,359 images is generated; 52.9% images with a face mask and 47.1% images without a face mask. The experimental results show that there is an accuracy of 99.65% in determining whether a person is wearing a mask or not. An accuracy of 99.52% is achieved in the facial recognition of 10 people with masks, while for facial recognition without masks, an accuracy of 99.96% is obtained.


Sign in / Sign up

Export Citation Format

Share Document