Three-Phase Separator Online Measurement and Data Analytics for Fluid Interface and Emulsion Thickness Utilizing a Single Emulsion Watch Profiler

2021 ◽  
Author(s):  
Jouni Hartikainen ◽  
Pekka Kaunisto ◽  
James Walls ◽  
Arto Voutilainen ◽  
Pasi Laakkonen ◽  
...  

Abstract Separators can over the length of field life be exposed to operating conditions outside the set design conditions, which can cause operating issues in terms of separator efficiency, operating expenditures and potential need for frequent maintenance and/or retrofitting new internals. In mature operations with heavy oils, there can be severe issues with Water-in-Oil and Oil-in-Water emulsion layers. In late life operations, enhanced oil recovery (EOR) efforts with polymer injection can also take place to produce more, but at the same time making the separator function in terms of phase separation even more complex. Emulsion thickness and residence time optimization in separators and tanks are key issues in the oil and gas operations. Real-time data of the full level profiling is complicated and has been based on instruments with varying reliability and performance. Operations have been relying on other process parameters and bottle tests. However, in this work, separator profiler utilizing electrical tomography was used for monitoring separator content online, especially fluid interface levels as well as emulsion and foam layer thicknesses. In addition, effect of polymer injection to the wells is investigated. From the single profiler, data for the separator fluid levels, emulsion and foam thicknesses can be derived. The profiler used is a safe-to-use non-radioactive probe-type measurement sensor which is installed through an existing separator nozzle. The actual separator profiler with dimensions 5 cm diameter and 3 m length was installed downstream of the inlet cyclones and the flow distribution baffles in the three-phase separator located at one of the production fields in the Middle East. Water-oil interface, turbulent water-in-oil dispersion band, oil-gas interface and foam layer thickness were monitored continuously for several months with varying flowrates and operation conditions. Later, effect of polymer injection was also investigated. Interface level and layer monitoring results will be given and discussed. The results show that the profiler is highly useful for monitoring the separator fluid distribution online, building a rigid data analytics model over time that can be utilized by the operations to improve and optimize the performance. This paper shares novel information on operational experience of data analytics used for three-phase separators operating in a heavy oil field with polymer injection. The sensor type used is novel to the industry with high robustness and reliability generating multiple data points per second, enabling a highly detailed analytics model generating new possibilities for operational optimization through digitalization. In addition, commissioning and monitoring of the sensor was done remotely during covid-19 shutdown without the need of external personnel entering the field demonstrating remote commissioning and digital oil field concepts.

2018 ◽  
Vol 12 (1) ◽  
pp. 11-20
Author(s):  
C. M. B. Araújo ◽  
H. A. Nascimento ◽  
C. J. Cavalcanti ◽  
M. A. M. Sobrinho ◽  
M. F. Pimentel

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 327
Author(s):  
Adeola Grace Olugbenga ◽  
Najah M. Al-Mhanna ◽  
Muibat Diekola Yahya ◽  
Eyitayo Amos Afolabi ◽  
Martins Kolade Ola

A three-phase separator is the first vessel encountered by well fluids. The application of separators has been of great value to the oil and gas industry. In order to generate the gas phase envelope that is applicable to the study of reservoir fluid and the selection of optimum operating conditions of separators, this research utilizes a specified reservoir fluid stream to simulate a three-phase separator executed in Aspen HYSYS. Subsequently, a comparative study of the effects of specified inlet operating conditions on the output of gas and oil streams was carried out. The results show that changing the inlet pressure of the separator from 1000 to 8000 kPa reduces the gas outlet flow from 1213 to 908.6 kg mol/h, while it increases the liquid flow rate from 374 to 838.0 kg mole/h. By changing the temperature of the separator feed stream from 13 to 83 °C, the gas outlet stream was raised from 707.4 to 1111 kg mol/h, while the liquid flow rate dropped from 1037.0 to 646.1 kg mol/h. It was observed that the concentration of the outlet methane product is not affected by changing the flow rate of the feed stream at a specific pressure and temperature. Therefore, the thermodynamic property method is appropriate to simulate the separation of reservoir fluids which was achieved by selecting the Peng–Robinson (PR) model. The operating conditions of the separator were at 8000 kPa and 43 °C, which lies right on the dew point line. This is comparable to similar work on CHEMCAD which was in turn validated by plant data. Thus, the gas flow rate and the oil flow rate were dependent on pressure and temperature conditions of the plant.


2020 ◽  
Vol 11 (1) ◽  
pp. 314
Author(s):  
Gustavo Henrique Bazan ◽  
Alessandro Goedtel ◽  
Marcelo Favoretto Castoldi ◽  
Wagner Fontes Godoy ◽  
Oscar Duque-Perez ◽  
...  

Three-phase induction motors are extensively used in industrial processes due to their robustness, adaptability to different operating conditions, and low operation and maintenance costs. Induction motor fault diagnosis has received special attention from industry since it can reduce process losses and ensure the reliable operation of industrial systems. Therefore, this paper presents a study on the use of meta-heuristic tools in the diagnosis of bearing failures in induction motors. The extraction of the fault characteristics is performed based on mutual information measurements between the stator current signals in the time domain. Then, the Artificial Bee Colony algorithm is used to select the relevant mutual information values and optimize the pattern classifier input data. To evaluate the classification accuracy under various levels of failure severity, the performance of two different pattern classifiers was compared: The C4.5 decision tree and the multi-layer artificial perceptron neural networks. The experimental results confirm the effectiveness of the proposed approach.


SPE Journal ◽  
2022 ◽  
pp. 1-18
Author(s):  
Marat Sagyndikov ◽  
Randall Seright ◽  
Sarkyt Kudaibergenov ◽  
Evgeni Ogay

Summary During a polymer flood, the field operator must be convinced that the large chemical investment is not compromised during polymer injection. Furthermore, injectivity associated with the viscous polymer solutions must not be reduced to where fluid throughput in the reservoir and oil production rates become uneconomic. Fractures with limited length and proper orientation have been theoretically argued to dramatically increase polymer injectivity and eliminate polymer mechanical degradation. This paper confirms these predictions through a combination of calculations, laboratory measurements, and field observations (including step-rate tests, pressure transient analysis, and analysis of fluid samples flowed back from injection wells and produced from offset production wells) associated with the Kalamkas oil field in Western Kazakhstan. A novel method was developed to collect samples of fluids that were back-produced from injection wells using the natural energy of a reservoir at the wellhead. This method included a special procedure and surface-equipment scheme to protect samples from oxidative degradation. Rheological measurements of back-produced polymer solutions revealed no polymer mechanical degradation for conditions at the Kalamkas oil field. An injection well pressure falloff test and a step-rate test confirmed that polymer injection occurred above the formation parting pressure. The open fracture area was high enough to ensure low flow velocity for the polymer solution (and consequently, the mechanical stability of the polymer). Compared to other laboratory and field procedures, this new method is quick, simple, cheap, and reliable. Tests also confirmed that contact with the formation rapidly depleted dissolved oxygen from the fluids—thereby promoting polymer chemical stability.


2010 ◽  
Vol 7 (2) ◽  
pp. 149-165 ◽  
Author(s):  
Ali Arif ◽  
Achour Betka ◽  
Abderezak Guettaf

A three-phase squirrel-cage induction motor is used as a propulsion system of an electric vehicle (EV). Two different control methods have been designed. The first is based on the conventional DTC Scheme adapted for three level inverter. The second is based on the application of fuzzy logic controller to the DTC scheme. The motor is controlled at different operating conditions using a FLC based DTC technique. In the simulation the novel proposed technique reduces the torque and current ripples. The EV dynamics are taken into account.


Author(s):  
Mohammad Rustam M. L. ◽  
F. Danang Wijaya

Under various external conditions, grid connected PV system performance is strongly affected by the topology that is used to connect a PV system with grid. This research aims to design a multistring based converter topology for three-phase grid connected 200 kW PV system that has a high performance in various operating conditions. Research was done by a simulation method using Matlab-Simulink with performance being evaluated including the generated power, efficiency, power quality in accordance with grid requirements, as well as the power flow. In the simulation, multistring converter topology was designed using two dc-dc boost multistring converters connected in parallel to a centralized of three-phase three-level NPC inverter with the size of the string being shorter and more parallel strings as well as the maximum voltage of the PV array of 273.5 V close to dc voltage reference of 500 V. Each dc-dc boost multistring converter have individual MPPT controllers. The simulation results showed that this multistring converter topology had a high performance in various operating conditions. This due to more power generated by the NPC inverter (> 190 kW) at the time of high power generation on the STC conditions (1000 W/m2, 25 oC), the lowest efficiency of the total system is 95.08 % and the highest efficiency of the total system is 99.4 %, the quality of the power generated in accordance with the requirements of grid, as well as the inverter put more active power to the grid and less reactive power to the grid. The response of the inverter slightly worse for loads with greater reactive power and unbalanced.


2015 ◽  
Author(s):  
Totok R. Biyanto ◽  
Andika D. S. Natawiria ◽  
Franky Kusuma ◽  
Ali Musyafa ◽  
Ronny D. Noriyati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document