scholarly journals EFFECT OF CHEMOTHERAPEUTIC AGENT (EXCEPT ANTICANCER AGENT) ON THE GROWTH OF THE EXPERIMENTAL MALIGNANT TUMOR (REPORT 1)

1958 ◽  
Vol 70 (12supplement) ◽  
pp. 130-136
Author(s):  
Ryoichi Uemura ◽  
Shigeru Iwamori ◽  
Kensaku Hirano ◽  
Tadanobu Okimoto ◽  
Akira Fujii
2020 ◽  
Vol 4 (1) ◽  
pp. 17-29
Author(s):  
Isma Attique ◽  
Shabbir Hussain ◽  
Muhammad Amjad ◽  
Khalida Nazir ◽  
Muhammad Shahid Nazir

Fluorine has a useful positron transmitting isotope and it enjoys broad application in the medical field. It is utilized in fluorinated agents,therapeutic sciences and steroid field. Fluorine incorporation viafluoroalkylation is a useful approach in the development of new functional materials and in drug design. Fluorine also plays its role as an anticancer agent and is a successful chemotherapeutic agent for certain sorts of malignant growth. 5-fluorouracil plays a vital role in the treatment of cancer. 18 Facts as a radio label tracer atom in PET imaging. 19 F has the second most sensitive and stable NMR-active nucleus.


2019 ◽  
Author(s):  
Anna Notaro ◽  
Marta Jakubaszek ◽  
Severin Koch ◽  
Riccardo Rubbiani ◽  
Orsolya Dömötör ◽  
...  

Cancer is one of the main causes of death worldwide. Chemotherapy, despite its severe side effects, is to date one of the leading strategies against cancer. Metal-based drugs present several potential advantages when compared to organic ones and gained trust from the scientific community after the approval on the market of the drug cisplatin. Recently, we reported a ruthenium complex ([Ru(DIP)2(sq)](PF6), where DIP is 4,7- diphenyl-1,10-phenantroline and sq is the semiquinonate), with a remarkable potential as chemotherapeutic agent against cancer, both in vitro and in vivo. In this work, we analyse a structurally similar compound, namely [Ru(DIP)2(mal)](PF6), carrying the flavour-enhancing agent approved by the FDA, maltol (mal). To possess an FDA approved ligand is crucial for a complex, whose mechanism of action might include ligand exchange. Herein, we describe the synthesis and characterisation of [Ru(DIP)2(mal)](PF6), its stability in solutions and in conditions which resemble the physiological ones, and its in-depth biological investigation. Cytotoxicity tests on different cell lines in 2D model and on HeLa MultiCellular Tumour Spheroids (MCTS) demonstrated that our compound has higher activity compared to the approved drug cisplatin, inspiring further tests. [Ru(DIP)2(mal)](PF6) was efficiently internalised by HeLa cells through a passive transport mechanism and severely affected the mitochondrial metabolism. <br>


2019 ◽  
Author(s):  
Anna Notaro ◽  
Marta Jakubaszek ◽  
Severin Koch ◽  
Riccardo Rubbiani ◽  
Orsolya Dömötör ◽  
...  

Cancer is one of the main causes of death worldwide. Chemotherapy, despite its severe side effects, is to date one of the leading strategies against cancer. Metal-based drugs present several potential advantages when compared to organic ones and gained trust from the scientific community after the approval on the market of the drug cisplatin. Recently, we reported a ruthenium complex ([Ru(DIP)2(sq)](PF6), where DIP is 4,7- diphenyl-1,10-phenantroline and sq is the semiquinonate), with a remarkable potential as chemotherapeutic agent against cancer, both in vitro and in vivo. In this work, we analyse a structurally similar compound, namely [Ru(DIP)2(mal)](PF6), carrying the flavour-enhancing agent approved by the FDA, maltol (mal). To possess an FDA approved ligand is crucial for a complex, whose mechanism of action might include ligand exchange. Herein, we describe the synthesis and characterisation of [Ru(DIP)2(mal)](PF6), its stability in solutions and in conditions which resemble the physiological ones, and its in-depth biological investigation. Cytotoxicity tests on different cell lines in 2D model and on HeLa MultiCellular Tumour Spheroids (MCTS) demonstrated that our compound has higher activity compared to the approved drug cisplatin, inspiring further tests. [Ru(DIP)2(mal)](PF6) was efficiently internalised by HeLa cells through a passive transport mechanism and severely affected the mitochondrial metabolism. <br>


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Chung Pin Lim ◽  
Mun Fei Yam ◽  
Mohd. Zaini Asmawi ◽  
Voon Kin Chin ◽  
Nurul Hayah Khairuddin ◽  
...  

Medicinal plants have been considered as promising sources of drugs in treating various cancers. Crinum amabile (C. amabile), a plant species from the Amaryllidaceae family, is claimed to be a potential source for cancer chemotherapeutic compounds. Here, we aimed to investigate the potential of C. amabile as an anticancer agent. Dried leaves of C. amabile were serially extracted and our findings showed that chloroform extract (CE) was shown to exhibit cytotoxic effect against all cancer cell lines used. This active extract was further fractionated in which F5 fraction was shown to possess the highest cytotoxicity among all fractions. F5 fraction was then tested in-depth through Annexin V/FITC apoptosis and DNA fragmentation assays to determine its apoptotic effect on MCF-7 cells. Results revealed that F5 fraction only showed induction of cell apoptosis starting at 72-hour treatment while DNA fragmentation was not detected at any of the concentrations and treatment periods tested. Meanwhile, cell proliferation assay revealed that F5 fraction was able to inhibit normal cell proliferation as well as VEGF-induced cell proliferation of normal endothelial cell (HUVECs). In conclusion, F5 fraction from C. amabile leaf CE was able to exhibit cytostatic effect through antiproliferation activity rather than induction of cell apoptosis and therefore has the potential to be further investigated as an anticancer agent.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ahmad Gholami ◽  
Fatemeh Farjami ◽  
Younes Ghasemi

Polyaniline was electrochemically polymerized onto the platinum electrode modified with a mixture of Nafion and multiwalled carbon nanotube (PANI/MWCNT/Nf/Pt) to detect ammonium ion. The nanobiosensor (ASNase/PANI/MWCNT/Nf/Pt) was then prepared by immobilizing L-asparaginase (L-ASNase) on the PANI/MWCNT/Nf nanocomposite. The prepared nanobiosensor was used for the rapid and sensitive detection of serum concentration of the anticancer agent L-asparagine (L-Asp) during chemotherapy. The nanobiosensor has dynamic ranges of zero to 180 μM. The sensitivity of the nanobiosensor was 0.829 μA μM−1 cm−2, and the response time was less than 30 s. The detection limit was 140 nM of L-Asp. The Michaelis–Menten constant ( K m ) was measured to be 36.2 mM. The nanobiosensor was successfully applied for the determination of L-Asp in the blood samples of leukemia patients.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5986
Author(s):  
Julia Gallego-Jara ◽  
Gema Lozano-Terol ◽  
Rosa Alba Sola-Martínez ◽  
Manuel Cánovas-Díaz ◽  
Teresa de Diego Puente

Taxol®, which is also known as paclitaxel, is a chemotherapeutic agent widely used to treat different cancers. Since the discovery of its antitumoral activity, Taxol® has been used to treat over one million patients, making it one of the most widely employed antitumoral drugs. Taxol® was the first microtubule targeting agent described in the literature, with its main mechanism of action consisting of the disruption of microtubule dynamics, thus inducing mitotic arrest and cell death. However, secondary mechanisms for achieving apoptosis have also been demonstrated. Despite its wide use, Taxol® has certain disadvantages. The main challenges facing Taxol® are the need to find an environmentally sustainable production method based on the use of microorganisms, increase its bioavailability without exerting adverse effects on the health of patients and minimize the resistance presented by a high percentage of cells treated with paclitaxel. This review details, in a succinct manner, the main aspects of this important drug, from its discovery to the present day. We highlight the main challenges that must be faced in the coming years, in order to increase the effectiveness of Taxol® as an anticancer agent.


Author(s):  
H. J. Finol ◽  
M. E. Correa ◽  
L.A. Sosa ◽  
A. Márquez ◽  
N.L. Díaz

In classical oncological literature two mechanisms for tissue aggression in patients with cancer have been described. The first is the progressive invasion, infiltration and destruction of tissues surrounding primary malignant tumor or their metastases; the other includes alterations produced in remote sites that are not directly affected by any focus of disease, the so called paraneoplastic phenomenon. The non-invaded tissue which surrounds a primary malignant tumor or its metastases has been usually considered a normal tissue . In this work we describe the ultrastructural changes observed in hepatocytes located next to metastases from diverse malignant tumors.Hepatic biopsies were obtained surgically in patients with different malignant tumors which metatastized in liver. Biopsies included tumor mass, the zone of macroscopic contact between the tumor and the surrounding tissue, and the tissue adjacent to the tumor but outside the macroscopic area of infiltration. The patients (n = 5), 36–75 years old, presented different tumors including rhabdomyosarcoma, leiomyosarcoma, pancreas carcinoma, biliar duct carcinoma and colon carcinoma. Tissue samples were processed with routine techniques for transmission electron microscopy and observed in a Hitachi H-500 electron microscope.


Sign in / Sign up

Export Citation Format

Share Document