scholarly journals A Maltol-Containing Ruthenium Polypyridyl Complex as a Potential Anticancer Agent

Author(s):  
Anna Notaro ◽  
Marta Jakubaszek ◽  
Severin Koch ◽  
Riccardo Rubbiani ◽  
Orsolya Dömötör ◽  
...  

Cancer is one of the main causes of death worldwide. Chemotherapy, despite its severe side effects, is to date one of the leading strategies against cancer. Metal-based drugs present several potential advantages when compared to organic ones and gained trust from the scientific community after the approval on the market of the drug cisplatin. Recently, we reported a ruthenium complex ([Ru(DIP)2(sq)](PF6), where DIP is 4,7- diphenyl-1,10-phenantroline and sq is the semiquinonate), with a remarkable potential as chemotherapeutic agent against cancer, both in vitro and in vivo. In this work, we analyse a structurally similar compound, namely [Ru(DIP)2(mal)](PF6), carrying the flavour-enhancing agent approved by the FDA, maltol (mal). To possess an FDA approved ligand is crucial for a complex, whose mechanism of action might include ligand exchange. Herein, we describe the synthesis and characterisation of [Ru(DIP)2(mal)](PF6), its stability in solutions and in conditions which resemble the physiological ones, and its in-depth biological investigation. Cytotoxicity tests on different cell lines in 2D model and on HeLa MultiCellular Tumour Spheroids (MCTS) demonstrated that our compound has higher activity compared to the approved drug cisplatin, inspiring further tests. [Ru(DIP)2(mal)](PF6) was efficiently internalised by HeLa cells through a passive transport mechanism and severely affected the mitochondrial metabolism. <br>

2019 ◽  
Author(s):  
Anna Notaro ◽  
Marta Jakubaszek ◽  
Severin Koch ◽  
Riccardo Rubbiani ◽  
Orsolya Dömötör ◽  
...  

Cancer is one of the main causes of death worldwide. Chemotherapy, despite its severe side effects, is to date one of the leading strategies against cancer. Metal-based drugs present several potential advantages when compared to organic ones and gained trust from the scientific community after the approval on the market of the drug cisplatin. Recently, we reported a ruthenium complex ([Ru(DIP)2(sq)](PF6), where DIP is 4,7- diphenyl-1,10-phenantroline and sq is the semiquinonate), with a remarkable potential as chemotherapeutic agent against cancer, both in vitro and in vivo. In this work, we analyse a structurally similar compound, namely [Ru(DIP)2(mal)](PF6), carrying the flavour-enhancing agent approved by the FDA, maltol (mal). To possess an FDA approved ligand is crucial for a complex, whose mechanism of action might include ligand exchange. Herein, we describe the synthesis and characterisation of [Ru(DIP)2(mal)](PF6), its stability in solutions and in conditions which resemble the physiological ones, and its in-depth biological investigation. Cytotoxicity tests on different cell lines in 2D model and on HeLa MultiCellular Tumour Spheroids (MCTS) demonstrated that our compound has higher activity compared to the approved drug cisplatin, inspiring further tests. [Ru(DIP)2(mal)](PF6) was efficiently internalised by HeLa cells through a passive transport mechanism and severely affected the mitochondrial metabolism. <br>


The role of vitamin D is implicated in carcinogenesis through numerous biological processes like induction of apoptosis, modulation of immune system inhibition of inflammation and cell proliferation and promotion of cell differentiation. Its use as additional adjuvant drug with cancer treatment may be novel combination for improved outcome of different cancers. Numerous preclinical, epidemiological and clinical studies support the role of vitamin D as an anticancer agent. Anticancer properties of vitamin D have been studied widely (both in vivo and in vitro) among various cancers and found to have promising results. There are considerable data that indicate synergistic potential of calcitriol and antitumor agents. Possible mechanisms for modulatory anticancer activity of vitamin D include its antiproliferative, prodifferentiating, and anti-angiogenic and apoptic properties. Calcitriol reduces invasiveness and metastatic potential of many cancer cells by inhibiting angiogenesis and regulating expression of the key molecules involved in invasion and metastasis. Anticancer activity of vitamin D is synergistic or additive with the antineoplastic actions of several drugs including cytotoxic chemotherapy agents like paclitaxel, docetaxel, platinum base compounds and mitoxantrone. Benefits of addition of vitamin D should be weighed against the risk of its toxicity.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i7-i7
Author(s):  
Jiaojiao Deng ◽  
Sophia Chernikova ◽  
Wolf-Nicolas Fischer ◽  
Kerry Koller ◽  
Bernd Jandeleit ◽  
...  

Abstract Leptomeningeal metastasis (LM), a spread of cancer to the cerebrospinal fluid and meninges, is universally and rapidly fatal due to poor detection and no effective treatment. Breast cancers account for a majority of LMs from solid tumors, with triple-negative breast cancers (TNBCs) having the highest propensity to metastasize to LM. The treatment of LM is challenged by poor drug penetration into CNS and high neurotoxicity. Therefore, there is an urgent need for new modalities and targeted therapies able to overcome the limitations of current treatment options. Quadriga has discovered a novel, brain-permeant chemotherapeutic agent that is currently in development as a potential treatment for glioblastoma (GBM). The compound is active in suppressing the growth of GBM tumor cell lines implanted into the brain. Radiolabel distribution studies have shown significant tumor accumulation in intracranial brain tumors while sparing the adjacent normal brain tissue. Recently, we have demonstrated dose-dependent in vitro and in vivo anti-tumor activity with various breast cancer cell lines including the human TNBC cell line MDA-MB-231. To evaluate the in vivo antitumor activity of the compound on LM, we used the mouse model of LM based on the internal carotid injection of luciferase-expressing MDA-MB-231-BR3 cells. Once the bioluminescence signal intensity from the metastatic spread reached (0.2 - 0.5) x 106 photons/sec, mice were dosed i.p. twice a week with either 4 or 8 mg/kg for nine weeks. Tumor growth was monitored by bioluminescence. The compound was well tolerated and caused a significant delay in metastatic growth resulting in significant extension of survival. Tumors regressed completely in ~ 28 % of treated animals. Given that current treatments for LM are palliative with only few studies reporting a survival benefit, Quadriga’s new agent could be effective as a therapeutic for both primary and metastatic brain tumors such as LM. REF: https://onlinelibrary.wiley.com/doi/full/10.1002/pro6.43


2020 ◽  
Vol 2 (1) ◽  
pp. FDD28 ◽  
Author(s):  
Oleg Babii ◽  
Sergii Afonin ◽  
Tim Schober ◽  
Liudmyla V Garmanchuk ◽  
Liudmyla I Ostapchenko ◽  
...  

Aim: To verify whether photocontrol of biological activity could augment safety of a chemotherapeutic agent. Materials & methods: LD50 values for gramicidin S and photoisomeric forms of its photoswitchable diarylethene-containing analogs were determined using mice. The results were compared with data obtained from cell viability measurements taken for the same compounds. Absorption, Distribution, Metabolism, and Elimination (ADME) tests using a murine cancer model were conducted to get insight into the underlying reasons for the observed in vivo toxicity. Results: While in vitro cytotoxicity values of the photoisomers differed substantially, the differences in the observed LD50 values were less pronounced due to unfavorable pharmacokinetic parameters. Conclusion: Despite unfavorable pharmacokinetic properties as in the representative case studied here, there is an overall advantage to be gained in the safety profile of a chemotherapeutic agent via photocontrol. Nevertheless, optimization of the pharmacokinetic parameters of photoisomers is an important issue to be addressed during the development of photopharmacological drugs.


2020 ◽  
Vol 10 (6) ◽  
pp. 315-324
Author(s):  
Fahmi Radityamurti ◽  
Fauzan Herdian ◽  
Tiara Bunga Mayang Permata ◽  
Handoko Handoko ◽  
Henry Kodrat ◽  
...  

Introduction: Vitamin D has been shown to have anti-cancer properties such as antioxidants, anti-proliferative, and cell differentiation. The property of vitamin D as an anticancer agent triggers researchers to find out whether vitamin D is useful as a radiosensitizer. Multiple studies have been carried out on cell lines in various types of cancer, but the benefits of vitamin D as a radiosensitizer still controversial. This paperwork aims to investigate the utilization of Vitamin D3 (Calcitriol) as radiosensitizer in various cell line through literature review.Methods: A systematic search of available medical literature databases was performed on in-vitro studies with Vitamin D as a radiosensitizer in all types of cell lines. A total of 11 in-vitro studies were evaluated.Results: Nine studies in this review showed a significant effect of Vitamin D as a radiosensitizer agent by promoting cytotoxic autophagy, increasing apoptosis, inhibiting of cell survival and proliferation, promoting gene in ReIB inhibition, inducing senescene and necrosis. The two remaining studies showed no significant effect in the radiosensitizing mechanism of Vitamin D due to lack of evidence in-vitro settings.Conclusion: Vitamin D have anticancer property and can be used as a radiosensitizer by imploring various mechanism pathways in various cell lines. Further research especially in-vivo settings need to be evaluated.


2019 ◽  
Vol 39 (12) ◽  
Author(s):  
Jingjing Liu ◽  
Hongsheng Liang ◽  
Chen Chen ◽  
Xiaoxing Wang ◽  
Faling Qu ◽  
...  

Abstract Glioma is one of the most common types of primary brain tumors. Ivermectin (IVM), a broad-spectrum antiparasitic drug, has been identified as a novel anticancer agent due to its inhibitory effects on the proliferation of glioma cells in vitro and in vivo. However, the ability of IVM to induce autophagy and its role in glioma cell death remains unclear. The main objective of the present study was to explore autophagy induced by IVM in glioma U251 and C6 cells, and the deep underlying molecular mechanisms. In addition, we examined the effects of autophagy on apoptosis in glioma cells. In the present study, transmission electron microscopy (TEM), immunofluorescence, Western blot and immunohistochemistry were used to evaluate autophagy activated by IVM. Cell viability was measured by 3-(4,5-dimethylthiazol2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and colony formation assay. The apoptosis rate was detected by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Meanwhile, autophagy inhibition was achieved by using chloroquine (CQ). U251-derived xenografts were established for examination of IVM-induced autophagy on glioma in vivo. Taken together, the results of the present study showed that autophagy induced by IVM has a protective effect on cell apoptosis in vitro and in vivo. Mechanistically, IVM induced autophagy through AKT/mTOR signaling and induced energy impairment. Our findings show that IVM is a promising anticancer agent and may be a potential effective treatment for glioma cancers.


Blood ◽  
2016 ◽  
Vol 128 (14) ◽  
pp. 1845-1853 ◽  
Author(s):  
Michael Xiang ◽  
Haesook Kim ◽  
Vincent T. Ho ◽  
Sarah R. Walker ◽  
Michal Bar-Natan ◽  
...  

Key PointsThe FDA-approved drug atovaquone is a novel, clinically available inhibitor of STAT3 at standard human plasma concentrations. Atovaquone shows anticancer efficacy in vitro, in vivo, and in a retrospective study of AML patient outcomes after atovaquone treatment.


2016 ◽  
Vol 12 (2) ◽  
pp. 513
Author(s):  
Xinjun Cai ◽  
Zeng Wang ◽  
Congyao Wang ◽  
Huijun Zhou ◽  
Jianjun Ni ◽  
...  

2020 ◽  
Vol 245 (3) ◽  
pp. 213-220
Author(s):  
Dianhui Xiu ◽  
Min Cheng ◽  
Wenlei Zhang ◽  
Xibo Ma ◽  
Lin Liu

Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PAM) is an inactivate P. aeruginosa with mannose-sensitive hemagglutinin. Recently, the anticancer properties of PAM against many cancers have been reported across a range of studies. However, the exact mechanism through which PAM prevents skin cancer remains unclear. The aim of this study is to show to what extent PAM could inhibit the dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin cancer. JB6 cells were treated by TPA so as to establish an in vitro model. The effects of PAM on proliferation of the cells were analyzed using cell counting kit-8 assays. Effects on epithelial–mesenchymal transition (EMT) were assayed by real-time PCR and Western blotting. A DMBA/TPA-induced skin cancer mouse model was also established. The results showed that TPA promoted EMT changes through the activation of the hedgehog (Hh) pathway, which was reversed by PAM. Moreover, PAM inhibited the cancer growth and Hh pathway in vivo. These data indicate that PAM may serve as a potential anticancer agent for the treatment of skin cancer. Impact statement Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PAM) restrained the chemical-induced skin cancer cells in vitro and in vivo partly through suppressing the Hh signaling pathway, indicating that PAM may be a promising anticancer agent for treating skin cancer.


Sign in / Sign up

Export Citation Format

Share Document