scholarly journals Innate Recognition of the Microbiota by TLR1 Promotes Epithelial Homeostasis and Prevents Chronic Inflammation

2018 ◽  
Vol 201 (1) ◽  
pp. 230-242 ◽  
Author(s):  
Karishma Kamdar ◽  
Andrew M. F. Johnson ◽  
Denise Chac ◽  
Kalisa Myers ◽  
Vrishika Kulur ◽  
...  
2018 ◽  
Author(s):  
Daniele Muraro ◽  
Aimee Parker ◽  
Laura Vaux ◽  
Sarah Filippi ◽  
Alexander G. Fletcher ◽  
...  

AbstractThe intestinal epithelium is a single layer of cells which provides the first line of defence of the intestinal mucosa to bacterial infection. Cohesion of this physical barrier is supported by renewal of epithelial stem cells, residing in invaginations called crypts, and by crypt cell migration onto protrusions called villi; dysregulation of such mechanism may render the gut susceptible to chronic inflammation. The impact that excessive or misplaced epithelial cell death may have on villus cell migration is currently unknown. We integrated cell-tracking methods with computational models to determine how epithelial homeostasis is affected by acute and chronic inflammatory cell death. Parameter inference reveals that acute inflammatory cell death has a transient effect on epithelial cell dynamics, whereas cell death caused by chronic inflammation causes a delay in the accumulation of labelled cells onto the villus compared to control. Such a delay may be reproduced by using a cell-based model to simulate the dynamics of each cell in a crypt-villus geometry, showing that a prolonged increase in cell death slows the migration of cells from the crypt to the villus. This investigation highlights which injuries (acute or chronic) may be regenerated and which cause disruption of healthy epithelial homeostasis.


Author(s):  
S.S. Poolsawat ◽  
C.A. Huerta ◽  
S.TY. Lae ◽  
G.A. Miranda

Introduction. Experimental induction of altered histology by chemical toxins is of particular importance if its outcome resembles histopathological phenomena. Hepatotoxic drugs and chemicals are agents that can be converted by the liver into various metabolites which consequently evoke toxic responses. Very often, these drugs are intentionally administered to resolve an illness unrelated to liver function. Because of hepatic detoxification, the resulting metabolites are suggested to be integrated into the macromolecular processes of liver function and cause an array of cellular and tissue alterations, such as increased cytoplasmic lysis, centrilobular and localized necroses, chronic inflammation and “foam cell” proliferation of the hepatic sinusoids (1-4).Most experimentally drug-induced toxicity studies have concentrated primarily on the hepatic response, frequently overlooking other physiological phenomena which are directly related to liver function. Categorically, many studies have been short-term effect investigations which seldom have followed up the complications to other tissues and organs when the liver has failed to function normally.


2019 ◽  
Vol 133 (22) ◽  
pp. 2283-2299
Author(s):  
Apabrita Ayan Das ◽  
Devasmita Chakravarty ◽  
Debmalya Bhunia ◽  
Surajit Ghosh ◽  
Prakash C. Mandal ◽  
...  

Abstract The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)−/− mice. Plasma level of sTLT1 was found to be significantly (P<0.05) higher in clinical (2342 ± 184 pg/ml) and subclinical cases (1773 ± 118 pg/ml) than healthy controls (461 ± 57 pg/ml). Moreover, statistical analyses further indicated that sTLT1 was not only associated with common risk factors for Coronary Artery Disease (CAD) in both clinical and subclinical groups but also strongly correlated with disease severity. Ex vivo studies on macrophages showed that sTLT1 interacts with Fcɣ receptor I (FcɣRI) to activate spleen tyrosine kinase (SYK)-mediated downstream MAP kinase signalling cascade to activate nuclear factor-κ B (NF-kB). Activation of NF-kB induces secretion of tumour necrosis factor-α (TNF-α) from macrophage cells that plays pivotal role in governing the persistence of chronic inflammation. Atherosclerotic apoE−/− mice also showed high levels of sTLT1 and TNF-α in nearly occluded aortic stage indicating the contribution of sTLT1 in inflammation. Our results clearly demonstrate that sTLT1 is clinically related to the risk factors of CAD. We also showed that binding of sTLT1 with macrophage membrane receptor, FcɣR1 initiates inflammatory signals in macrophages suggesting its critical role in thrombus development and atherosclerosis.


2009 ◽  
Author(s):  
Virginia E. Ferent ◽  
Celestina Barbosa-Leiker ◽  
Bruce Wright

1985 ◽  
Vol 54 (02) ◽  
pp. 485-489 ◽  
Author(s):  
Yukiyoshi Hamaguchi ◽  
Masuichi Ohi ◽  
Yasuo Sakakura ◽  
Yasuro Miyoshi

SummaryTissue-type plasminogen activator (TPA) was purified from maxillary mucosa with chronic inflammation and compared with urokinase. Purification procedure consisted of the extraction from delipidated mucosa with 0.3M potassium acetate buffer (pH 4.2), 66% saturation of ammonium sulfate, zinc chelate-Sepharose, concanavalin A-Sepharose and Sephadex G-100 gel filtration chromatographies.The molecular weight of the TPA was approximately 58,000 ± 3,000. Its activity was enhanced in the presence of fibrin and was quenched by placental urokinase inhibitor, but not quenched by anti-urokinase antibody. The TPA made no precipitin line against anti-urokinase antibody, while urokinase did.All these findings indicate that the TPA in maxillary mucosa with chronic inflammation is immunologically dissimilar to urokinase and in its affinity for fibrin.


Sign in / Sign up

Export Citation Format

Share Document