Comparative Test Data for TIM Materials for LED Applications

2012 ◽  
Vol 2012 (DPC) ◽  
pp. 000655-000683
Author(s):  
Victor Papanu

Developments in thermal interface materials (TIMs) continue across the industry with a variety of different types of materials. Thermal and mechanical design engineers are often confronted with the need to select which type or category of TIM material is the most appropriate for a specific LED module application, which can be confusing, and how to determine which materials provide the best thermal performance. The next step is understanding which TIM material types meet requirements for ease of shipping, handling, placement, cost, and rework. These are important distinctions, in addition to thermal performance. This presentation will illustrate comparative testing results for a set of thermal interface materials (TIMs) in different categories, using different TIM testing procedures. Test data prepared using three different test methods will be compared:1. ASTM D5470-06 with known temperatures and clamping forces;2. In-situ testing with industry-standard semiconductor modules, at known temperatures and estimated clamping forces;3. In-situ testing utilizing a thermal test vehicle (TTV) for TIM2 performance for a processor module. In-situ testing has been performed at an independent power semiconductor manufacturer, using both industry-standard and commonly-available modules and a custom-designed module with a relatively small footprint, capable of high operating junction temperatures. This testing data can illustrate how different types of TIM materials perform in laboratory testing conditions, for precise comparisons on thermal performance alone; and how different types of materials perform in what are termed as “in-situ” test procedures. This term is used for application-specific conditions, where additional variables are encountered in the testing (such as non-flat surface conditions and unknown clamping force values), which is significantly different from the laboratory conditions used to generate ASTM D-5470 test values. The comparative testing that has been undertaken will be described, showing that images of various power semiconductors with several different materials tend to correlate with the thermal resistance of materials measured with the ASTM D 5470-06 method. These thermal interface materials were also tested on a TTV supplied by a major processor module. The relevance of the thermal imaging, the TTV and the ASTM values will be discussed. This presentation is intended to illustrate the differences in experimental data from one TIM material to another, as well as the differences in testing procedures.

2016 ◽  
Vol 138 (1) ◽  
Author(s):  
Chandan K. Roy ◽  
Sushil Bhavnani ◽  
Michael C. Hamilton ◽  
R. Wayne Johnson ◽  
Roy W. Knight ◽  
...  

This study investigates the reliability of low melt alloys (LMAs) containing gallium (Ga), indium (In), bismuth (Bi), and tin (Sn) for the application as Thermal interface materials (TIMs). The analysis described herein involved the in situ thermal performance of the LMAs as well as performance evaluation after accelerated life cycle testing, which included high temperature aging at 130 °C and thermal cycling from −40 °C to 80 °C. Three alloys (75.5Ga & 24.5In, 100Ga, and 51In, 32.5Bi & 16.5Sn) were chosen for testing the thermal performance. Testing methodologies used follow ASTM D5470 protocols and the performance of LMAs is compared with some high-performing commercially available TIMs. Results show that LMAs can offer extremely low (<0.01 cm2 °C/W) thermal resistance compared to any commercial TIMs. The LMA–substrate interactions were explored using different surface treatments (copper and tungsten). Measurements show that depending on the substrate–alloy combinations, the proposed alloys survive 1500 hrs of aging at 130 °C and 1000 cycles from −40 °C to 80 °C without significant performance degradation. The obtained results indicate the LMAs are very efficient as TIMs.


Author(s):  
Chandan K. Roy ◽  
Daniel K. Harris ◽  
Sushil Bhavnani ◽  
Michael C. Hamilton ◽  
Wayne Johnson ◽  
...  

This paper focuses on developing a reliable thermal interface material (TIM) using low melt alloys (LMAs) containing gallium (Ga), indium (In), bismuth (Bi), and tin (Sn). The investigation described herein involved the in situ thermal performance of the LMAs as well as performance evaluation after accelerated life cycle testing, which included isothermal aging at 130°C and thermal cycling from −40°C to 80°C. Three alloys (75.5Ga &24.5In, 100Ga, and 51In, 32.5Bi &16.5Sn) were chosen for testing the thermal performance. Testing methodologies used follow ASTM D5470 protocols and the results are compared with some commercially available TIMs. The LMAs-substrate interaction was investigated by applying the alloys using different surface treatments (copper and tungsten). Measurements show that the alloys did survive extended aging and cycling depending upon the substrate-alloy combinations.


Author(s):  
Vadim Gektin ◽  
Sai Ankireddi ◽  
Jim Jones ◽  
Stan Pecavar ◽  
Paul Hundt

Thermal Interface Materials (TIMs) are used as thermally conducting media to carry away the heat dissipated by an energy source (e.g. active circuitry on a silicon die). Thermal properties of these interface materials, specified on vendor datasheets, are obtained under conditions that rarely, if at all, represent real life environment. As such, they do not accurately portray the material thermal performance during a field operation. Furthermore, a thermal engineer has no a priori knowledge of how large, in addition to the bulk thermal resistance, the interface contact resistances are, and, hence, how much each influences the cooling strategy. In view of these issues, there exists a need for these materials/interfaces to be characterized experimentally through a series of controlled tests before starting on a thermal design. In this study we present one such characterization for a candidate thermal interface material used in an electronic cooling application. In a controlled test environment, package junction-to-case, Rjc, resistance measurements were obtained for various bondline thicknesses (BLTs) of an interface material over a range of die sizes. These measurements were then curve-fitted to obtain numerical models for the measured thermal resistance for a given die size. Based on the BLT and the associated thermal resistance, the bulk thermal conductivity of the TIM and the interface contact resistance were determined, using the approach described in the paper. The results of this study permit sensitivity analyses of BLT and its effect on thermal performance for future applications, and provide the ability to extrapolate the results obtained for the given die size to a different die size. The suggested methodology presents a readily adaptable approach for the characterization of TIMs and interface/contact resistances in the industry.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000613-000618
Author(s):  
Dave Saums ◽  
Tim Jensen ◽  
Carol Gowans ◽  
Seth Homer ◽  
Ron Hunadi

Abstract Semiconductor test and burn-in requirements for thermal interface materials (TIMs) are challenging, with difficult mechanical reliability requirements that are not found in other types of applications for these materials. To demonstrate the ability of certain newly-developed TIMs to not only provide suitable thermal performance for the device under test and meet these mechanical requirements, a contact cycling test has been devised in three phases for evaluating TIM mechanical performance and durability.


Author(s):  
Arun Gowda ◽  
Annita Zhong ◽  
Sandeep Tonapi ◽  
Kaustubh Nagarkar ◽  
K. Srihari

Thermal Interface Materials (TIMs) play a key role in the thermal management of microelectronics by providing a path of low thermal impedance between the heat generating devices and the heat dissipating components (heat spreader/sink). In addition, TIMs need to reliably maintain this low thermal resistance path throughout the operating life of the device. Currently, several different TIM material solutions are employed to dissipate heat away from semiconductor devices. Thermal greases, adhesives, gels, pads, and phase change materials are among these material solutions. Each material system has its own advantages and associated application space. While thermal greases offer excellent thermal performance, their uncured state makes them susceptible to pump-out and other degradation mechanisms. On the other hand, adhesives offer structural support but offer a higher heat resistance path. Gels are designed to provide a level of cross-linking to allow the thermal performance of greases and prevent premature degradation. However, the degree of crosslinking can have a significant effect of the behavior of gels. In this research, TIMs with varying cross-linking densities are studied and their thermal and mechanical properties reported. The base resin systems and fillers were maintained constant, while slight compositional alternations were made to induce different degrees of cross-linking.


Sign in / Sign up

Export Citation Format

Share Document