Photolithography Alignment Mark Transfer System for Low Cost, Advanced Packaging, and Bonded Wafer Applications

2016 ◽  
Vol 2016 (DPC) ◽  
pp. 001302-001327 ◽  
Author(s):  
Tom Swarbrick ◽  
Keith Best ◽  
Casey Donaher ◽  
Steve Gardner

Advanced packaging technologies continue to enable the semiconductor industry to meet the needs for ever thinner, smaller and faster components required in mobile devices and other high performance applications. However, the increase in chip I/O count, driven by Moore's law, and the ability to produce FinFETs below 10nm has presented numerous additional challenges to the existing advanced packaging processes. Furthermore, unlike Moore's law, which predicted the number of transistors in a dense integrated circuit to double approximately every two years, advanced packaging is experiencing an alternate “law”; where instead of the number of transistors increasing, it is the number of functions increasing, within the ever decreasing volume constraints of the final product that drives the technology roadmap. Inevitably, as functionality increases, so does the process complexity and cost. And in the very cost sensitive advanced packaging arena, Outsourced Semiconductor Assembly and Test suppliers (OSATs) need to compensate by reducing their manufacturing costs. This requires the OSAT to reduce material costs, increase throughput, yield, and look for new ways to reduce the number of process steps. One of the ways in which the OSATs have reduced the cost of materials is by removing the silicon wafer from the backend processing altogether; using epoxy mold compound (EMC) to create reconstituted wafers, or by using glass carriers. In the case of glass carriers, it is often the case, where the dice are attached face down on the carrier and subsequent processing prevents the front side patterns from being visible from the top side of the composite stack, even with Infrared (IR) imaging. In this particular case, an additional lithography “clear out” window is defined in photoresist over the alignment mark so the opaque film can be etched away from the alignment mark, the resist is then stripped and cleaned. This additional processing is obviously costly and time consuming. This paper specifically focuses on the concepts, methodology, and performance of a stepper based photolithography solution that utilizes a photoresist latent image to provide temporary alignment marks for the lithography process, removing the need for the additional patterning and etching steps. This revolutionary system employs a backside camera, to align to die through the carrier. A separate exposure unit, calibrated to the alignment camera center, exposes temporary latent image targets which are then detected by the system's regular alignment system during the normal stepper lithography operation. The performance data for the alignment, overlay, and latent image depth control are discussed in detail. The final analysis proves that overlay of < 2um is readily achievable, with no impact on system throughput.

2016 ◽  
Vol 2016 (1) ◽  
pp. 000315-000320 ◽  
Author(s):  
Keith Best ◽  
Steve Gardner ◽  
Casey Donaher

Abstract Advanced packaging technologies continue to enable the semiconductor industry to meet the needs for ever thinner, smaller and faster components required in mobile devices and other high performance applications. However, the increase in chip I/O count, driven by Moore's law, and the ability to produce FinFETs below 10nm have presented numerous additional challenges to the existing advanced packaging processes. Furthermore, unlike Moore's law, which predicted the number of transistors in a dense integrated circuit to double approximately every two years, advanced packaging is experiencing an alternate “law”; where instead of the number of transistors increasing, it is the number of functions increasing, within the ever decreasing volume constraints of the final product that drives the technology roadmap. Inevitably, as functionality increases, so does the process complexity and cost. In this very cost sensitive advanced packaging arena, outsourced semiconductor assembly and test suppliers (OSATs) need to compensate by reducing their manufacturing costs. This requires the OSAT to reduce material costs, increase throughput, yield, and look for new ways to reduce the number of process steps. One of the ways in which the OSATs have reduced the cost of materials is by removing the silicon wafer from back-end processing altogether; using epoxy mold compound (EMC) to create reconstituted wafers, or by using glass carriers. In the case of glass carriers, it is often the case, that the dice are attached face down on the carrier and subsequent processing prevents the front side patterns from being visible from the top side of the composite stack, even with infrared (IR) imaging. In this particular case, an additional lithography “clear out” window is defined in photoresist over the alignment mark so the opaque film can be etched away from the alignment mark, the resist stripped, and the lithography layer reworked. This additional processing is obviously costly and time consuming. This paper specifically focuses on the concepts, methodology, and performance of a stepper-based photolithography solution that utilizes a photoresist latent image to provide temporary alignment marks for the lithography process, removing the need for the additional patterning and etching steps. This revolutionary system employs a backside camera, to align to die through the carrier. A separate exposure unit, calibrated to the alignment camera center, exposes temporary latent image targets which are then detected by the system's regular alignment system during the normal stepper lithography operation. The performance data for the alignment, overlay, and latent image depth control are discussed in detail. The final analysis proves that overlay of < 2μm is readily achievable, with no impact on system throughput.


Author(s):  
Robert-H. Munnig Schmidt

The developments in lithographic tools for the production of an integrated circuit (IC) are ruled by ‘Moore’s Law’: the density of components on an IC doubles in about every two years . The corresponding size reduction of the smallest detail in an IC entails several technological breakthroughs. The wafer scanner, the exposure system that defines those details, is the determining factor in these developments. This review deals with those aspects of the positioning systems inside these wafer scanners that enable the extension of Moore’s Law into the future. The design of these systems is increasingly difficult because of the accuracy levels in the sub-nanometre range coupled with motion velocities of several metres per second. In addition to the use of feedback control for the reduction of errors, high-precision model-based feed-forward control is required with an almost ideally reproducible motion-system behaviour and a strict limitation of random disturbing events. The full mastering of this behaviour even includes material drift on an atomic scale and is decisive for the future success of these machines.


2007 ◽  
Vol 15 (3) ◽  
pp. 6-11
Author(s):  
John Mardinly

SummaryIn 1965, Gordon Moore predicted that the number of components in an integrated circuit would double every year. The drive for higher performance with greater economy has been a major factor in the pursuit of Moore's Law. Device scaling is expected to continue without interruption, and products manufactured using a nominal 22nm feature size should become commercially available by the year 2011. This article will detail the technology enablers that make Moore's Law possible, and the improvements in microscopy techniques required to meet the challenges that Moore's Law presents.


2005 ◽  
Vol 107 (4) ◽  
pp. 603-630 ◽  
Author(s):  
Ana Aizcorbe ◽  
Samuel Kortum

2006 ◽  
Vol 06 (02) ◽  
pp. L127-L131 ◽  
Author(s):  
YINGFENG LI ◽  
LASZLO B. KISH

The evolution of microprocessor miniaturization and performance, often described by Moore's law [1, 2], is close to the saturation limit. This paper discusses the limitation of the evolution of performance and minimization process for high performance microprocessors related to noise and power dissipation. In particular, the predictions provided in a previous paper [3] are refined in order to take into account the increasing effect of leakage currents on power dissipation.


2019 ◽  
Vol 13 (1) ◽  
pp. 106-109
Author(s):  
Thomas J. Misa

Abstract This talk presents the theme that anchors the new third edition of Leonardo to the Internet: Technology and Culture from the Renaissance to the Present, which is organized around technical-economic-political “eras” spotlighting the long-term interactions of technology and culture. The book’s first edition (2004) concluded with an optimistic assessment of global culture, then added a pessimistic assessment of systemic risk (2011). The eras point to socio-economic structures that foster and channel the development of certain technologies (and not others). This approach steers for a middle ground between social constructivism and technological determinism. This talk analyzes Moore’s Law (1975–2005), widely hailed to explain, well, everything. By 1975 Gordon Moore appeared to accurately “predict” the doubling every 18 months of the number components on each integrated circuit. During these years chips expanded from roughly 2,000 to 600 million transistors; more important the “law” guided a technical revolution and an industry transformation. At first national and then international cooperative “roadmapping” exercises predicted the exact dimensions of chips in the future, and semiconductor companies all aimed exactly where their peers were aiming. So Moore’s Law is a self-fulfilling prophecy supported for three decades by inter-firm cooperation and synchronized R&D.


2015 ◽  
Vol 761 ◽  
pp. 364-368 ◽  
Author(s):  
Sock Chien Tey ◽  
Kok Tee Lau ◽  
Mohd Hafizul Mohamad Noor ◽  
Yon Loong Tham ◽  
Mohd Edeerozey Abd Manaf

Copper (Cu) wire bonding on the pre-plated leadframes with Ni/Pd/AuAg plating has been applied extensively in the semiconductor industry for the interconnection of integrated-circuit (IC) packaging due to the lower material cost of Cu and its excellent electrical properties. Furthermore, the Cu wire bonding on the preplated leadframe has advantages, such as the tin whisker prevention and the robust package for automotive application. Nevertheless, a stitch bondability of Cu wire-preplated leadframe is facing several challenges, such as the Cu oxidation, the high hardness of Cu wire and the very thin AuAg plating on the leadframes. This paper discusses the effect of AuAg plating thickness in roughened pre-plated leadframe on the stitch bonding of Cu wires with the leadframe. The stitch bonding integrity was assessed using Dage 4000 shear/pull tool at a key wire bond responses of stitch pull at time zero (T0). Results show that the stitch pull strength of the Cu-leadframe stitch bonding increases with the increase thickness of AuAg layer. FESEM images of the stitch bonding between the Cu wires and the pre-plated leadframes of different AuAg plating thickness did not show any defect in microstructures, thus it suggests that the bonding property is determined by diffusion mechanism at the Cu wire/AuAg stitch bonding interface. Finally, a brief discussion is provided on the stitch bondability of high performance Au-flashed palladium-coated copper wires on the pre-plated leadframe with different AuAg thickness.


2017 ◽  
Vol 8 ◽  
pp. 2689-2710 ◽  
Author(s):  
Igor I Soloviev ◽  
Nikolay V Klenov ◽  
Sergey V Bakurskiy ◽  
Mikhail Yu Kupriyanov ◽  
Alexander L Gudkov ◽  
...  

The predictions of Moore’s law are considered by experts to be valid until 2020 giving rise to “post-Moore’s” technologies afterwards. Energy efficiency is one of the major challenges in high-performance computing that should be answered. Superconductor digital technology is a promising post-Moore’s alternative for the development of supercomputers. In this paper, we consider operation principles of an energy-efficient superconductor logic and memory circuits with a short retrospective review of their evolution. We analyze their shortcomings in respect to computer circuits design. Possible ways of further research are outlined.


2013 ◽  
Vol 21 (5) ◽  
pp. 22-26
Author(s):  
J. Teshima ◽  
E. Moyal ◽  
Jamil J. Clarke

The global consumer market wants smaller, faster, more reliable, lower-cost products. The semiconductor industry has responded by the doubling of chip transistor density every two years, closely following Moore's Law. To meet their goals, the industry has made huge investments in R&D and manufacturing to miniaturize components, increase the size of substrates (wafers), improve the productivity of factories, and invent new packaging technology.


Sign in / Sign up

Export Citation Format

Share Document