Embedded Si Fan Out: A Low Cost Wafer Level Packaging Technology Without Molding and De-bonding Processes

Author(s):  
Hong Xie ◽  
Daquan Yu ◽  
Zhenrui Huang ◽  
Zhiyi Xiao ◽  
Li Yang ◽  
...  

The growing and diversifying system requirements have continued to drive the development of a variety of new package technologies and configurations: small form factor, low weight, low profile, high pin count and high speed and low cost. Embedded chip in EMC, also called fan-out wafer-level packaging (FOWLP), has been used in various products such as baseband, RF (radio frequency) transceiver, and PMICs (power management ICs). Currently, INFO technology developed by TSMC®, NANIUM® were in mass production for 3D integration for processor and memory, which inspires other packaging foundries to develop their own embedded FOWLP for the forecasted explosive growth of this market in the next few years. There are a number of challenges for FOWLP. For process point of view, temporary bonding and de-bonding are required. EMC wafers are difficult to handle due to its large warpage driven by the big CTE difference between the Si and molding material. In addition, the manufacturing of fine pitch RDL on EMC surface is also difficult. In this paper, the concept of wafer level embedded Si Fan-Out (eSiFO) technology was introduced and the development progress was reported. For eSiFO, cavities with certain depth were formed by Si dry etch. Then device dies were thinned to designed thickness. The dice were then placed into the cavities and bonded by the attached film on the bottom of the dice. A reconstructed wafer was formed. The micro gap between the chip and sidewall of the cavity as well as the surface of the reconstructed wafer were filled by dry film using vacuum process. Next, the pads were opened, followed RDL fabrication, repassivation, BGA, wafer thinning and dicing. Finally, an eSiFO package was fabricated. There are a number of advantages for eSiFO technology. There is nearly no warpage since the Si was used as reconstruct substrate. The process is relatively simple since no molding, temporary bonding and de-bonding are required. RDL manufacturing is easier on Si wafer vs with molding compounds and can achieve high density routing. Furthermore, it can provide small form factor since the thinning of wafer is the last step. To prove the concept of eSiFO, a 3.3 x 3.3mm package with 50 BGA bumps at 400μm pitch was fabricated. The device wafer was thinned to 100μm. The die size is 1.96 × 2.36mm with pad pitch at about 90μm. The depth of the cavities on 8 in. wafer formed by Bosch process on bare Si wafer was 107μm with 8μm variation. The length and width of Si cavities is 20μm larger than die size. In the package, there is one layer Cu RDL with thickness of 3μm, minimum line width of 13.72μm. The BGA ball diameter is 280μm. All the processes were evaluated and the results showed such packages can be produced. Reliability tests including THS, T/C, HTS and HAST were carried out and no failure issue was observed. Mechanical simulation was used to analyze the stress distribution during TC test and the results showed the maximum stress was located at the RDL near the UBM. In summary, a low cost wafer level fan out technology using reconstructed Si wafer was developed. The process is simple without molding, temporary bonding and de-bonding. The reliability tests of test vehicles proved that such package is reliable. The newly developed eSiFO technology can be widely used for chips requiring fan-Out, small form factor and high density interconnects.

2021 ◽  
Vol 11 (6) ◽  
pp. 2803
Author(s):  
Jae-Woo Kim ◽  
Dong-Seong Kim ◽  
Seung-Hwan Kim ◽  
Sang-Moon Shin

A quad, small form-factor pluggable 28 Gbps optical transceiver design scheme is proposed. It is capable of transmitting 50 Gbps of data up to a distance of 40 km using modulation signals with a level-four pulse-amplitude. The proposed scheme is designed using a combination of electro-absorption-modulated lasers, transmitter optical sub-assembly, low-cost positive-intrinsic-native photodiodes, and receiver optical sub-assembly to achieve standard performance and low cost. Moreover, the hardware and firmware design schemes to implement the optical transceiver are presented. The results confirm the effectiveness of the proposed scheme and the performance of the manufactured optical transceiver, thereby confirming its applicability to real industrial sites.


2019 ◽  
Vol 12 (1) ◽  
pp. 42-45
Author(s):  
Alexandru Alexan ◽  
Anca Alexan ◽  
Oniga Ștefan ◽  
Alin Tisan

Abstract Nowadays SoC’s miniaturization provide smaller yet more powerful devices that are perfect to be used as local hubs for small to medium sensor networks. Although sensors can now be easily connected directly to the cloud, a hub can simplify the process of bringing sensor to the IoT cloud. One of the most popular SoC board, Raspberry PI, is perfect for the hub role due to its small form factor, price, processing power and connectivity. Our proposed system consists in a SoC based low cost raspberry pi hub that connects two Bluetooth sensortag CC2650 modules to a mongoDB cloud database.


2011 ◽  
Vol 2011 (DPC) ◽  
pp. 002226-002253 ◽  
Author(s):  
In Soo Kang ◽  
Jong Heon (Jay) Kim

In mobile application, the WLP technology has been developing to make whole package size almost same as chip size. However, the I/O per chip unit area has increased so that it gets difficult to realize ideal pad pitch for better reliability. Recently, to achieve the thin and small size, high performance and low cost semiconductor package, Embedding Die and Fanout Technologies have been suggested and developed based on wafer level processing. In this work, as a solution of system in package, wafer level embedded package and fanout technology will be reviewed. Firstly, Wafer level embedded System in Package (WL-eSiP) which has daughter chip (small chip) embedded inside mother chip (bigger chip) without any special substrate has been suggested and developed. To realize wafer level embedded system in package (WL-eSiP), wafer level based new processes like wafer level molding for underfilling and encapsulation by molding compound without any special substrate have been applied and developed, including high aspect ratio Cu bumping, mold thinning and chip-to-wafer flipchip bonding. Secondly, Fan-out Package is considered as alternative package structure which means merged package structure of WLCSP (wafer level chip size package) and PCB process. We can make IC packaging widen area for SIP(System in Package) or 3D package. In addition, TSV and IPD are key enabling technology to meet market demands because TSV interconnection can provide wider bandwidth and high transmission speed due to vertical one compared to wire bonding technology and IPD can provide higher performance, more area saving to be assembled and small form factor compared to discrete passive components.


2015 ◽  
Vol 2015 (1) ◽  
pp. 1-6
Author(s):  
Alvin Lee ◽  
Jay Su ◽  
Xiao Liu ◽  
Yin-Po Hung ◽  
Yu-Min Lin ◽  
...  

As requirements increase for mobile devices to be lighter and thinner and to operate at high speed and high bandwidth, innovations in wafer-level packaging have evolved to 3-D structures, such as package-on-package (PoP), fan-out integration, and through-silicon-via (TSV) interposer architectures. However, wafer-level packaging is still considered to be costly and slow in throughput due to wafer size limitations. In this study, temporary bonding and debonding processes using mechanical or laser release technologies were applied in the fabrication process of an integrated embedded glass interposer as a foundation for 3-D integrated circuit (IC) packaging on panel-level packaging. Glass interposers having dimensions of 10 mm × 10 mm and a thickness of 120 μm were fabricated. The interposers had through-glass vias (TGVs) 25 μm in diameter and 3000 I/O pads of copper under-bump metallization (UBM) and were designed as a nearly full-array type. The interposers were supported by a temporary bonding material on silicon or glass wafers and embedded by built-up dielectric material on which fan-out redistribution circuit layers were deposited. For forming the pattern of the redistribution layer, a UV laser was used to form 75-μm-diameter blind vias, and conductive interconnections were made by a semi-additive process (SAP) using photolithography and electrolytic copper. The process of building up layers from the glass interposer to form an embedded fan-out interposer can eliminate a joining process required by traditional 2.5-D IC integration. Finally, the embedded fan-out carrier is separated from the glass or silicon wafer through a laser debonding process. An experiment to study the correlation of bonding material and release material with built-up lamination in backside processes will be discussed in this paper to address full process integration on panel-size substrates. The combination of temporary bonding technology with mechanical or laser release technologies will pave the way for realizing cost-effective 3-D IC packaging on panel-level substrates.


Sign in / Sign up

Export Citation Format

Share Document