Quasi-Optical Testbed for Wideband THz On-Wafer Measurements

Author(s):  
Yiran Cui ◽  
Georgios C. Trichopoulos

At mmW and THz band, on-wafer testing is very critical for on-wafer electronics devices and circuits as well as spectroscopy. Nevertheless, current measurement capabilities are limited by contact probe technology and vector network analyzers (VNAs). Recently, we proposed a non-contact method to tackle the issue of using expensive and brittle contact probes. Using quasi-optics and on-chip antennas, the signals from the THz VNA are coupled on the device under test (DUT) with low insertion loss and unmatched repeatability. However, the bandwidth and cutoff frequency limitations of VNAs limit the scope of THz measurements and increase the complexity. State-of-the-art VNAs use external frequency multipliers, namely VNA extenders, to up-convert the VNA signal to the THz band. The problem of using such extenders is three-fold: 1) The maximum cutoff barely breaks it into the THz band, 2) they are bandlimited, and 3) they are extremely expensive due to costs associated with waveguide micromachining and sophisticated semiconductor processes for the electronics. Here, we propose the design of a novel quasi-optical on-wafer testbed that is compatible with photonics-based sources and detectors (e.g., photomixers) and use THz optical components instead of traditional waveguide structures to route the THz signals. With photomixers we can implement cost effective THz sources or receivers that can be efficiently integrated with quasi-optics. They feature a relatively simple topology and operate in a very wide bandwidth, typically from less than 100 GHz to more than 3 THz. Since the optical components are frequency independent, by adopting photomixers as THz emitter and detectors, the proposed quasi-optical system has a potential to achieve ultra-wideband on-wafer measurement capabilities. First, we talk about the design of the quasi-optical coupler consists of two beam splitters, which is used to discriminate between the reference and the measurement signals. Through a rigorous theoretical analysis and experiments we verified a minimum 60 dB isolation and less than 3 dB of insertion loss in the 330–500 GHz band. Then, we discuss how to use this quasi-optical coupler to implement one-port free-space measurements. We also discuss the calibration process and present three calibration standards that eliminate the error terms of the one-port free-space measurement topology. The experimental results we collected from our free-space measurements are shown afterwards. The results for two different DUTs show a good agreement between the measurement and the theoretical reflection coefficients. Next, we present the on-wafer testbed, which is constructed by a quasi-optical coupler and a non-contact probe. We also briefly introduce the on-wafer calibration approach and on-wafer standards. We notice that, in order to couple the THz beam to the on-wafer DUT, all the on-wafer standards and DUTs need to be integrated with probing antennas. Finally, we show the experimental results we obtained from one-port on-wafer measurements. For two different on-wafer DUTs, the measurement results agree with the simulations very well. Besides, with multiple measurements, we also verified that the proposed quasi-optical testbed has a good repeatability.

2019 ◽  
Vol 30 ◽  
pp. 12005
Author(s):  
Elena Efremova ◽  
Alexander Dmitriev ◽  
Lev Kuzmin ◽  
Manvel Petrosyan

A method for wireless distance measurement using ultrawideband chaotic radio pulses based on statistical analysis is proposed. Experimental results are discussed.


2016 ◽  
Vol 78 (5-4) ◽  
Author(s):  
Muhammad Syafiq Noor Azizi ◽  
Azahari Salleh ◽  
Adib Othman ◽  
Najmiah Radiah Mohamad ◽  
Nor Azlan Aris ◽  
...  

In this paper, we study behavior of Ultra wideband antenna which is Rectangular Slotted Microstrip Patch Antenna. Then, the antenna operated in proximity of human arm model. Furthermore, the antenna is designed on a FR-4 substrate with dielectric constant of 4.3 and thickness 1.6 mm. This antenna simulated in CST Microwave Studio software. In order to test the antenna, an arm model was numerically modelled. The study shows properties and performances of antenna when it is placed in three situations which in free space, outside and inside of human arm model. The properties of UWB antenna in term of return loss, gain, directivity and radiation pattern in the three situations is simulated and discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Young-Gon Kim ◽  
Kang Wook Kim

A clear and efficient design method for ultra-wideband microstrip-to-suspended stripline transition, which is based on the analytical expressions of the whole transitional structure, is presented. The conformal mapping is applied to obtain the characteristic impedance of the transitional structure within 2.85% accuracy as compared with the EM-simulation results. The transition is designed to provide broadband impedance matching and smooth field conversion. The implemented transition performs less than 0.6 dB insertion loss per transition for frequencies up to 30 GHz.


2005 ◽  
Vol 475-479 ◽  
pp. 2999-3002
Author(s):  
W.L. Lu ◽  
Y. Wang ◽  
Jin Tao Hai

Sandglass extrusion is an ultrafine grain size method. Due to the repetitive and multiple extrusions, large strain will be accumulated and ultafine grain size can be obtained. There are some factors that can affect the experimental result of sandglass extrusion. Among these factors, free space in mould cavity is very important, which can affect the forming of the fold during the extrusion. In this paper, the effects of free space in mould cavity on sandglass extrusion have been discussed and theory analysis and experimental results have been reported.


Author(s):  
Omkar Karhade ◽  
Levent Degertekin ◽  
Thomas Kurfess

Micromachined Scanning Grating Interferometer (μSGI) array offers a viable solution to the high resolution, large bandwidth, non-contact and high throughput metrology. Parallel active control of μSGIs is necessary to reduce the effect of positioning errors and ambient vibration noise. To achieve individual control of the μSGIs, the gratings in the μSGI are micromachined on Silicon membranes, which can be electrostatically actuated. These tunable gratings are designed to have sufficient range of motion (∼400nm) and sufficient bandwidth (∼50kHz) for effective noise reduction. The tunable gratings are fabricated successfully using Silicon on Insulator wafers with a two mask process. A novel recurrent calibration based control algorithm is designed to actively control the tunable gratings. The novel algorithm is implemented digitally using FPGA on an array of μSGIs simultaneously. The algorithm compensates for the non-linearities of the actuator and problem due to limited range of motion. A system model is built to design and analyze the control algorithm and is verified by experimental results. Experimental results show 100 times noise reduction at low frequencies and 6.5kHz noise reduction cutoff frequency. A resolution of 1×10−4 nmrms/√Hz is achieved by implementation of this algorithm on μSGI.


2019 ◽  
Vol 12 (2) ◽  
pp. 116-119
Author(s):  
F. Parment ◽  
A. Ghiotto ◽  
T.-P. Vuong ◽  
L. Carpentier ◽  
K. Wu

AbstractA compact transition between conductor-backed coplanar waveguide (CBCPW) and substrate integrated suspended line (SISL) is presented. Compared to the reported transitions from CBCPW to SISL, performance and compactness are improved. For demonstration purpose, a multilayer transition is designed and fabricated for operation up to 46 GHz. Experimental results, based on an electronic calibration and thru–reflect–line calibration allowing measurement in the 0.01–50 GHz frequency range, demonstrate an insertion loss of 0.59 ± 0.51 dB with a return loss of better than 10 dB in the 10 MHz to 46 GHz frequency range.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Gabriel Martínez-Niconoff ◽  
P. Martinez-Vara ◽  
G. Diaz-Gonzalez ◽  
J. Silva-Barranco ◽  
A. Carbajal-Domínguez

With the purpose to compare the physical features of the electromagnetic field, we describe the synthesis of optical singularities propagating in the free space and on a metal surface. In both cases the electromagnetic field has a slit-shaped curve as a boundary condition, and the singularities correspond to a shock wave that is a consequence of the curvature of the slit curve. As prototypes, we generate singularities that correspond to fold and cusped regions. We show that singularities in free space may generate bifurcation effects while plasmon fields do not generate these kinds of effects. Experimental results for free-space propagation are presented and for surface plasmon fields, computer simulations are shown.


2015 ◽  
Vol 8 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Teng Li ◽  
Wenbin Dou

In this paper, a novel wideband right-angle transition between thin substrate integrated waveguide (SIW) and rectangular waveguide (RWG) based on multi-section structure operating at center frequency 31.5 GHz is presented. A multi-section SIW with a rectangular aperture etched on the broad wall and two stepped ridges embedded in the RWG flange are introduced to obtain a wide impedance matching. The simulations show that the bandwidth with return loss better than 20 dB is about 17 GHz. In order to verify our designs, two back-to-back transitions with different lengths are fabricated and measured. The experimental results agree well with simulations. The proposed component shows an insertion loss less than 0.44 dB and a return loss better than 14.5 dB over 12.15 GH, which corresponds to 38.57% bandwidth.


Sign in / Sign up

Export Citation Format

Share Document