UV Projection Scanner Performance in Thick Resists for High Aspect Ratio Cu Pillars

Author(s):  
William Vis ◽  
Fabian Benthaus ◽  
Habib Hichri ◽  
Markus Arendt

Integration in the third dimension is becoming increasingly more common in advanced packaging to overcome limitations in Moore's Law. One popular example for 3D Integration is Package-on-Package (PoP), where memory stacks are mounted above the processor. This approach requires tall, high density Cu pillars for interconnection around the processor. Ever increasing I/O requirements creates a need for Cu pillars with smaller critical dimension (CD) in thick resist. This creates high aspect ratio challenges for materials and equipment. For lithography tools, low NA projection systems are fundamentally well-suited to achieve high aspect ratio patterns, due to the inverse relationship between depth-of-focus (DOF) and Numerical Aperture (NA). However, the NA of low NA steppers is not low enough for thick resists. The full-field projection scanner with lower NA provides superior performance than the stepper counterpart at higher throughput and lower cost. This paper presents the high aspect ratio performance of the full-field UV projection scanner tool in various thick resists ranging from 50um to 300um film thickness. Aspect ratios as high as 20:1 are demonstrated for square vias with 1:1 pitch. Further, as feature resolution is only practical with alignment, the alignment of thick resists is also included.

Aerospace ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 80
Author(s):  
Dmitry V. Vedernikov ◽  
Alexander N. Shanygin ◽  
Yury S. Mirgorodsky ◽  
Mikhail D. Levchenkov

This publication presents the results of complex parametrical strength investigations of typical wings for regional aircrafts obtained by means of the new version of the four-level algorithm (FLA) with the modified module responsible for the analysis of aerodynamic loading. This version of FLA, as well as a base one, is focused on significant decreasing time and labor input of a complex strength analysis of airframes by using simultaneously different principles of decomposition. The base version includes four-level decomposition of airframe and decomposition of strength tasks. The new one realizes additional decomposition of alternative variants of load cases during the process of determination of critical load cases. Such an algorithm is very suitable for strength analysis and designing airframes of regional aircrafts having a wide range of aerodynamic concepts. Results of validation of the new version of FLA for a high-aspect-ratio wing obtained in this work confirmed high performance of the algorithm in decreasing time and labor input of strength analysis of airframes at the preliminary stages of designing. During parametrical design investigation, some interesting results for strut-braced wings having high aspect ratios were obtained.


RSC Advances ◽  
2020 ◽  
Vol 10 (73) ◽  
pp. 45037-45041
Author(s):  
Tianli Duan ◽  
Chenjie Gu ◽  
Diing Shenp Ang ◽  
Kang Xu ◽  
Zhihong Liu

A novel technique is demonstrated for the fabrication of silicon nanopillar arrays with high aspect ratios.


2020 ◽  
Author(s):  
Jihong Yim ◽  
Oili Ylivaara ◽  
Markku Ylilammi ◽  
Virpi Korpelainen ◽  
Eero Haimi ◽  
...  

<p>ABSTRACT: Atomic layer deposition (ALD) raises global interest through its unparalleled conformality. This work describes new microscopic lateral high-aspect-ratio (LHAR) test structures for conformality analysis of ALD. The LHAR structures are made of silicon and consist of rectangular channels supported by pillars. Extreme aspect ratios even beyond 10 000:1 enable investigations where the adsorption front does not penetrate to the end of the channel, thus exposing the saturation profile for detailed analysis. We use the archetypical trimethylaluminum (TMA)-water ALD process to grow alumina as a test vehicle to demonstrate the applicability, repeatability and reproducibility of the saturation profile measurement and to provide a benchmark for future saturation profile studies. Through varying the TMA reaction and purge times, we obtained new information on the surface chemistry characteristics and the chemisorption kinetics of this widely studied ALD process. We propose new saturation profile related classifications and terminology. </p>


1994 ◽  
Vol 337 ◽  
Author(s):  
Marsha Abramo ◽  
Loren Hahn

ABSTRACTFocused ion beam (FIB) technology is used to modify circuits for early-product design debug; it also has the capability to create probe points to underlying metallurgy, allowing device characterization while maintaining full functionality. These techniques provide critical feedback to designers for rapid verification of proposed design changes.Current FIB technology has its limitations because of redeposition of sputtered material; this phenomena may induce vertical electrical shorts and limit the achievable aspect ratio of a milled via to 6:1. Therefore, innovative enhancements are required to provide modification capability on planar chip technology which may utilize up to five levels of metallurgy. The ability to achieve high-aspect-ratio milling is required to access underlying circuitry. Vias with aspect ratios of 10:1 are necessary in some cases.This paper reviews a gas-assisted etching (GAE) process that enhances FIB milling by volatilizing the sputtered material, examines the results obtained from utilizing the GAE process for high-aspect-ratio milling, and discusses selectivity of semiconductor materials (silicon, aluminum, tungsten and silicon dioxide).


1999 ◽  
Author(s):  
Xiaobin Li ◽  
Siddharth Kiyawat ◽  
Hector J. De Los Santos ◽  
Chang-Jin “CJ” Kim

Abstract Narrow beamwidth is highly desirable for many micromechanical elements moving parallel to the substrate. A good example is the electrostatically driven flexure structure, whose driving voltage is determined by the width of the beam. This paper presents the process flow and the result of a high-aspect-ratio electroplating process using photoresist (PR) molds. Following a systematic optimization method, PR molds with aspect ratios up to 4.0 were fabricated with a beamwidth of only 2.1μm. Higher aspect ratios, up to 6.8, were achieved using PR double coating technique, with a beamwidth of 2.6μm. Using a Cr/Cu seed layer, nickel electroplating was successfully carried out to translate the PR molds into nickel micro-structures. We observed bend-down of the fully released nickel cantilevers that are over 8μm thick. Further investigation suggested a combined effect of residual stress gradient in the electroplated nickel layer and in-use stiction of the cantilever beams.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 378 ◽  
Author(s):  
Hailiang Li ◽  
Changqing Xie

We report a robust, sidewall transfer metal assistant chemical etching scheme for fabricating Al2O3 nanotube arrays with an ultra-high aspect ratio. Electron beam lithography followed by low-temperature Au metal assisted chemical etching (MacEtch) is used to pattern high resolution, high aspect ratio, and vertical silicon nanostructures, used as a template. This template is subsequently transferred by an atomic layer deposition of the Al2O3 layer, followed by an annealing process, anisotropic dry etching of the Al2O3 layer, and a sacrificial silicon template. The process and characterization of the Al2O3 nanotube arrays are discussed in detail. Vertical Al2O3 nanotube arrays with line widths as small as 50 nm, heights of up to 21 μm, and aspect ratios up to 420:1 are fabricated on top of a silicon substrate. More importantly, such a sidewall transfer MacEtch approach is compatible with well-established silicon planar processes, and has the benefits of having a fully controllable linewidth and height, high reproducibility, and flexible design, making it attractive for a broad range of practical applications.


Author(s):  
Juan A. Alfaro-Barrantes ◽  
Massimo Mastrangeli ◽  
David J. Thoen ◽  
Juan Bueno ◽  
Jochem J. A. Baselmans ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Mario Rosario Chiarelli ◽  
Salvatore Bonomo

The results of numerical studies carried out on high-aspect-ratio wings with different planforms are discussed: the transonic regime is analysed for a swept wing and a curved planform wing. The wings have similar aspect ratios and similar aerodynamic profiles. The analyses were carried out by CFD and FE techniques, and the reliability of the numerical aerodynamic results was proven by a sensitivity study. Analysing the performances of the two wings demonstrated that in transonic flight conditions, a noticeable drag reduction can be obtained by adopting a curved planform wing. In addition, for such a wing, the aeroelastic instability condition, consisting in a classical flutter, is postponed compared to a conventional swept wing, for which a flutter-buffet instability occurs. In a preliminary manner, the study shows that, for a curved planform wing, the high speed buffet is not an issue and at the same time notable fuel saving can be achieved.


Author(s):  
Marie Pinti ◽  
Shaurya Prakash

Hybrid microfluidic and nanofluidic devices have a variety of applications including water desalination, molecular gates and DNA sieving among several other lab-on-chip uses. Most microfluidic and nanofluidic devices currently are fabricated in glass, silicon, polydimethylsiloxane (PDMS), or with a combination of these materials. In order to impart functionality, metals, polymers or auxiliary components are often integrated with these devices. Ultra-low aspect ratio channels have several advantages including critical dimensions on the nanoscale but increased throughput compared to higher aspect ratio channels with the same critical dimension, which is important for applications where a higher volumetric flow rate is desired. Additionally, theoretical analysis is significantly easier as ultra-low aspect ratio channels can be modeled as 1-D systems. The fabrication methods for achieving low aspect ratios (< 0.005) usually require extensive facilities with several innovative fabrication and bonding schemes being previously reported. In this paper, we report on fabrication and bonding of ultra-low aspect ratio microfluidic and nanofluidic devices with aspect ratios at 0.0005 in glass/PDMS devices in contrast to the previous best reported result of 0.005 achieved in a silica device using stamp and stick PDMS bonding. The simplicity of our approach presents a new pathway to achieving the lowest aspect ratio nanochannels ever reported for channels fabricated using an interfacial layer for bonding. Centimeter long nanochannels on a borosilicate substrate were fabricated by standard UV photolithography followed by wet etching. Surface roughness of the fabricated channels is on the same order as the roughness of the initial substrate (2–3 nm) and therefore can enable fabrication of channels with critical dimensions approaching 15 nm or less. Devices were then bonded using a second borosilicate substrate with a thin PDMS adhesion layer (∼ 2 μm). The PDMS adhesion layer allows rapid, facile, and alignment-free bonding compared to traditional fusion or anodic bonds. Successful verification of device operation and functionality was determined by verifying flow in operational devices and with scanning electron microscopy to confirm bonding for the formation of nanochannels.


Sign in / Sign up

Export Citation Format

Share Document