Additive Manufacturing for Multi-chip Modules

2018 ◽  
Vol 2018 (1) ◽  
pp. 000760-000766
Author(s):  
Zhenzhen Shen ◽  
Aleksey Reiderman

Abstract The implementation of microelectronics, also known as multi-chip modules (MCM), is extensive in automotive, downhole and aerospace applications. MCMs have already demonstrated high-temperature performance, step improvement in reliability, and the potential to reduce product cost through miniaturization and integration of more functions. However, there are barriers preventing wider adoption of MCM technology in downhole applications. High non-recurring expenditures (NRE) charges increase development costs. Long substrate lead times prolong the time to market. Lengthy design iterations make it difficult to apply lean startup methodology to accelerate innovation. The main factor that leads to high NRE and long lead times is the complexity of substrate manufacturing processes. Together with assembly, MCM manufacturing comprises at least 11 steps, 6 different materials, 10 or more different machines, and requires a minimum of 6 supporting employees. A new concept proposes a simplified process to reduce labor and expenses. With best implementation, this process would require only a single machine capable of cycling through 3-step process of dispensing, placement and cure. Despite the dramatically simplified process, the constructional complexity of circuits can still be very high, such as a 3D multilayer MCM. In this paper, this concept was evaluated, micro-dispensing equipment was used to create basic circuitry blocks. Different materials to create conductive traces, isolation layers and wire bond replacement were evaluated. High-temperature aging tests were conducted to monitor the electrical and mechanical performance under thermal stress. The feasibility of dispensing fine features using dispensing and jetting methods are presented in the study. Conductors are a critical part in microelectronic assemblies because they create interconnects and thermal dissipation paths for microelectronics. Three different conductor materials were tested for their dispensability, resistance, continuity at temperature, and coefficients of thermal expansion (CTE) compatibility with different materials under thermal cycling. For dielectric materials, the requirements were to create various assembly constructs. The characterization included dispensability, electrical insulation, breakdown voltage, high-temperature performance, and the effects of CTE. Different approaches with different materials were tested for feasibility for wire bonding replacement. The application needs fine feature size with medium resistance lines. Consequently, the criteria for the material selection are fine particle size and medium sheet resistance. For high-power devices where heavy-gauge wires were used, jet dispensing is applicable. For other application with regular wire diameters, direct write is used. The over-all tests demonstrated the feasibility of using dispensed materials to replace wire bonds, which brings better reliability for shock and vibration, as compared to traditional wire bonds. The reliability of this approach requires a set of optimally matched conductive and dielectric materials. Three conductive materials (A, B and C) and three dielectric materials (D, E and F) were evaluated in this study. Tested conductive epoxy A can be used for attachment of SMT components with non-tin terminals, short traces, and wire bonding replacement for 25-μm wires, but it is not ideal for fine lines(<65um). Tested conductive epoxy B can be used for fine traces (58μm), and wire bonding replacement for 25-μm wires. The resistance of that material is not ideal. Nano-silver paste can be used for long traces, heavy-gauge wire bonding replacement, pads/polygons, the sheet resistance is equivalent to 0.5Oz Cu. For dielectrics, epoxy C can be used for crossovers, dielectric layers, and components staking. Epoxy D can be used for die edge insulation, but it is not ideal. Epoxy E can be used for crossovers and components staking. Epoxy F can be used for encapsulation and components staking. The wire bonding replacement concept structure is established with the dielectric forming the insulation around die edge, then the conductive wires dispensed on top of it. Feasibility was confirmed, a proof-of-concept was built, and some level of thermal stress was tested on the samples. Particle size and viscosity are critical to achieve fine features for micro-dispensing conductors and dielectrics. Periodic evaluations must be conducted to follow up on industry's progress with materials.

PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247390
Author(s):  
Xinli Gan ◽  
Wenli Zhang

The objective of this study is to verify the feasibility of using biochar made from crop straw as a bitumen additive to improve some properties of bitumen. The differences between crop straw biochar prepared in a laboratory and commercial charcoal were investigated through scanning electron microscopy and laser particle size analyses. Furthermore, biochar-modified asphalt was prepared using the high-speed shear method, and the penetration, softening point, ductility at 15°C, and apparent viscosity of the asphalt binder with 6% biochar were measured at 120, 135, 150, 160, and 175°C. It was found that both the crop straw biochar and the commercial charcoal consist mainly of C, O, Si, and K, but the C content of crop straw biochar is slightly higher than that of commercial charcoal. The particle size of biochar is smaller than that of commercial charcoal, while the specific surface area is larger. It was determined that the addition of crop straw biochar significantly improved the high-temperature performance of asphalt, and that biochar and commercial charcoal have a similar influence on the high temperature performance of asphalt.


2016 ◽  
Vol 680 ◽  
pp. 103-106
Author(s):  
Fei Yang Chen ◽  
Fei Xia Luo ◽  
Ze Hua Zhou ◽  
Chao Du ◽  
Yu Chun Zou ◽  
...  

Silicon nitride whiskers or rod-like crystals have a wide range application due to its excellent mechanical properties and high temperature performance. Two different silicon powders with different size (mesh 200 and mesh 300, respectively) were chosen to prepare rod-like Si3N4 crystals by SHS method and the effects of silicon particle size on the morphology of rod-like Si3N4 crystals were investigated. The results indicate that rod-like Si3N4 crystals could be formed with either kind of silicon powders when no more than 9wt% extra Y2O3 was introduced, which could effectively promote the growth of rod-like Si3N4 crystals. The residual free silicon was detected when using coarse silicon powders, while the silicon could be reacted completely with nitrogen gas when using fine silicon powders. The morphology of samples with coarse Si powders as starting materials is more uniform and regular than that of fine Si powders samples. Fine silicon powders are not ideal candidates for forming uniform and regular rod-like Si3N4 crystals.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000531-000535 ◽  
Author(s):  
Zhenzhen Shen ◽  
Aleksey Reiderman

Abstract In a harsh environment, wire-bonded interconnects are critical for overall reliability of microelectronic assemblies. Aluminum is the dominating metallization of the die wire bonding pads and aluminum wires are used to achieve monometallic bonding system on die side. On the substrate side, a monometallic connection is not readily available and typically involves expensive aluminum thin-film deposition or labor-intensive bonding tabs. Nickel-palladium-gold galvanic or electro-less plating stacks are also used to improve bondability and reliability of non-monometallic Al wire bonds on the substrate side. However, these plating stacks do not perform well after excursions above 330°C that are needed for the attachment of die and passives prior to wire bonding. At these temperatures, both palladium and nickel diffuse through the gold and form surface oxides that degrade wire bondability. In monometallic wire-bonding schemes, in addition to aluminum wires gold wires within same assembly are often also needed, for example, when some die is only available with gold-plated bond pads, or to connect substrates to gold-plated pins of hybrid housings. A universal substrate metallization, compatible with aluminum wire and gold wire, is therefore desirable. Thin-film substrates produced by sequential deposition and etching of gold metal, barrier metals, then aluminum metal is a good working solution, but it can be as much as ten times more expensive than other types of substrates. Printed thick-film metallization, a well-established technology, have been widely used for hybrid substrates. Silver-based thick films are inexpensive and capable of accepting aluminum and gold bonds. However, the silver-aluminum bonds are seldom used because of intermetallic formation and subsequent degradation triggered by multiple factors like temperature, humidity, and the presence of halogens. Pd and Pt are often added to the Ag thick films to decrease this effect, but potential usability and the reliability of these formulations in extreme temperature environments is not well researched. For this study, samples of Pt/Ag thick-film metallization were printed on Al2O3 substrates, and 25-um and 250-um aluminum wires and 50-um gold wires were wedge bonded in daisy chain to the substrate. The test vehicles were subjected to high-temperature testing at 260°C and 280°C. Thermal cycling tests from −20°C to 280°C were also performed. Mechanical and electrical characterizations of the wire bonds were conducted periodically. These tests included resistance and pull-strength measurements. Failure analysis of the bond joints was performed to understand the results of the tests. The 250-um Al wire and 25-um Al wire showed no significant changes until a critical time-at-temperature was reached. After reaching this temperature, the wire/substrate interface resistance rapidly increased to values as high as 40 Ohms for the 25-um Al wires. However, the pull strength remained within standard throughout the tests of up to 1200 hours. The relationship between time to failure and the temperature is presented in the paper. There was a four times life increase of bonds with every 20°C. With gold wires, no dramatic increase of bond resistance was observed, only a slight increase with time. The pull strength of Au wires remained stable throughout the time at high temperature. The tested Ag/Pt thick film metallization was found to be compatible with bonding of the gold wires and the aluminum wires for high-temperature applications up to an Arrhenius equivalent of 800 hours at 260°C. Additionally, Parylene HT coating was vapor-deposited on one set of 250-um Al wire-bonding samples. This set of samples demonstrated doubling of its useful life as compared to the uncoated samples.


Author(s):  
Arnon Hirshberg ◽  
David Elata

We present a novel method of direct wire-bonding of Silicon MEMS devices that does not require any metal bond-pads. We demonstrate that the strength and the conductivity of direct wire-bonds are comparable with those of standard bonds on metal bond-pads. Direct wire-bonding eliminates the metallization step, thus alleviating the constraint of consecutive high-temperature micromachining processes.


Alloy Digest ◽  
1996 ◽  
Vol 45 (1) ◽  

Abstract Allegheny Ludlum AL276 is widely used in the most severe environments found in chemical plants and in power plant desulfurization systems. The high molybdenum level with tungsten gives excellent pitting and crevice corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, joining, and surface treatment. Filing Code: Ni-497. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1995 ◽  
Vol 44 (3) ◽  

Abstract NICROFER 5520 Co is a nickel-chromium-cobalt-molybdenum alloy with excellent strength and creep properties up to high temperatures. Due to its balanced chemical composition the alloy shows outstanding resistance to high temperature corrosion in the form of oxidation and carburization. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ni-480. Producer or source: VDM Technologies Corporation.


Alloy Digest ◽  
1993 ◽  
Vol 42 (10) ◽  

Abstract ALTEMP HX is an austenitic nickel-base alloy designed for outstanding oxidation and strength at high temperatures. The alloy is solid-solution strengthened. Applications include uses in the aerospace, heat treatment and petrochemical markets. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-442. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1993 ◽  
Vol 42 (7) ◽  

Abstract DELORO 716 PM is a nickel-base alloy recommended for handling conditions of wear, erosion, heat and corrosion when impact is also a consideration. This datasheet provides information on composition, physical properties, and hardness. It also includes information on high temperature performance and wear resistance as well as machining and joining. Filing Code: Ni-435. Producer or source: Deloro Stellite Inc.


Alloy Digest ◽  
1987 ◽  
Vol 36 (8) ◽  

Abstract NILO alloy 36 is a binary iron-nickel alloy having a very low and essentially constant coefficient of thermal expansion at atmospheric temperatures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Fe-79. Producer or source: Inco Alloys International Inc..


Sign in / Sign up

Export Citation Format

Share Document