Direct Wire-Bonding to Silicon Devices Without the Use of Metallic Layers

Author(s):  
Arnon Hirshberg ◽  
David Elata

We present a novel method of direct wire-bonding of Silicon MEMS devices that does not require any metal bond-pads. We demonstrate that the strength and the conductivity of direct wire-bonds are comparable with those of standard bonds on metal bond-pads. Direct wire-bonding eliminates the metallization step, thus alleviating the constraint of consecutive high-temperature micromachining processes.

2017 ◽  
Vol 2017 (1) ◽  
pp. 000432-000437 ◽  
Author(s):  
Michael David Hook ◽  
Michael Mayer ◽  
Stevan Hunter

Abstract Reliability of wire bonds made with palladium-coated copper (PCC) wire of 25 μm diameter is studied by measuring the wire bond resistance increase over time in high temperature storage at 225 °C. Ball bonds are made on two bond pad thicknesses and tested with and without mold compound encapsulation. Bond pads are aluminum copper (Al-0.5%Cu), 800 nm and 3000 nm thick. The wirebonding pattern is arranged to facilitate 4-wire resistance measurements of 12 bond pairs in each 28-pin ceramic test package. The ball bonding recipe is optimized to minimize splash on 3000 nm Al-0.5%Cu with shear strength at least 120 MPa. Ball bond diameter is 61 μm and height is 14 μm. Measurements include bond shear test data and in-situ resistance before and during high temperature storage. Bonds on 3000 nm pads are found to be significantly more reliable than bonds on 800 nm pads within 140 h of aging.


Author(s):  
S. A. Kudtarkar ◽  
R. Murcko ◽  
K. Srihari ◽  
S. Saiyed

Wire bonding is widely used as one of the main interconnect alternatives. This technique applies significant mechanical stresses on the bond pads along with heat and ultrasonic energy to form a bond. An interconnection of copper plus low k material has been a focus of the semiconductor industry with the goal of reducing interconnection delays. The material is below the wire bond pads and complicates the mechanical stability of the device during wire bonding. The low k materials that are suggested are very sensitive to these mechanical stresses. This generates a significant reliability concern for the underlying metal structures. In addition, the integrity of the bond formed may be negatively impacted from a reliability perspective because of the softer material properties of the dielectric. This research explores the ball bond integrity for die with SiO2 and low k dielectric underlying material respectively, using 0.8 mil thick (20 microns) gold wire. Accelerated tests, such as high temperature storage at 150°C and 175°C, were conducted to assess the reliability of these bonds. The results of this investigation reveal that the ball bond’s strength degrades after high temperature tests due to the occurrence of Kirkendall voids between the gold wire and the aluminum bond pad. The degradation recorded was more severe for regular die than its low k counterpart.


2021 ◽  
Vol 6 (1) ◽  
pp. 53
Author(s):  
Muhammad Talal Asghar ◽  
Thomas Frank ◽  
Frank Schwierz

Stacks consisting of titanium, platinum, and gold layers constitute a popular metallization system for the bond pads of semiconductor chips. Wire bonding on such layer stacks at different temperatures has extensively been investigated in the past. However, reliable information on the bondability of this metallization system after a high-temperature sintering process is still missing. When performing wire bonding after pressure sintering (at, e.g., 875 °C), bonding failures may occur that must be identified and analyzed. In the present study, a focused ion beam (FIB), scanning electron microscopy (SEM), and elemental mapping are utilized to characterize the root cause of failure. As a probable root cause, the infusion of metallization layers is found which causes an agglomerate formation at the interface of approximately 2 μm height difference on strain gauge contact pads and possibly an inhomogeneous mixing of layers as a consequence of the high-temperature sintering process. Potential treatment to tackle this agglomeration with the removal of the above-mentioned height difference during the process of contact pad structuring and alternative electrical interconnect methodologies are hereby suggested in this paper.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000760-000766
Author(s):  
Zhenzhen Shen ◽  
Aleksey Reiderman

Abstract The implementation of microelectronics, also known as multi-chip modules (MCM), is extensive in automotive, downhole and aerospace applications. MCMs have already demonstrated high-temperature performance, step improvement in reliability, and the potential to reduce product cost through miniaturization and integration of more functions. However, there are barriers preventing wider adoption of MCM technology in downhole applications. High non-recurring expenditures (NRE) charges increase development costs. Long substrate lead times prolong the time to market. Lengthy design iterations make it difficult to apply lean startup methodology to accelerate innovation. The main factor that leads to high NRE and long lead times is the complexity of substrate manufacturing processes. Together with assembly, MCM manufacturing comprises at least 11 steps, 6 different materials, 10 or more different machines, and requires a minimum of 6 supporting employees. A new concept proposes a simplified process to reduce labor and expenses. With best implementation, this process would require only a single machine capable of cycling through 3-step process of dispensing, placement and cure. Despite the dramatically simplified process, the constructional complexity of circuits can still be very high, such as a 3D multilayer MCM. In this paper, this concept was evaluated, micro-dispensing equipment was used to create basic circuitry blocks. Different materials to create conductive traces, isolation layers and wire bond replacement were evaluated. High-temperature aging tests were conducted to monitor the electrical and mechanical performance under thermal stress. The feasibility of dispensing fine features using dispensing and jetting methods are presented in the study. Conductors are a critical part in microelectronic assemblies because they create interconnects and thermal dissipation paths for microelectronics. Three different conductor materials were tested for their dispensability, resistance, continuity at temperature, and coefficients of thermal expansion (CTE) compatibility with different materials under thermal cycling. For dielectric materials, the requirements were to create various assembly constructs. The characterization included dispensability, electrical insulation, breakdown voltage, high-temperature performance, and the effects of CTE. Different approaches with different materials were tested for feasibility for wire bonding replacement. The application needs fine feature size with medium resistance lines. Consequently, the criteria for the material selection are fine particle size and medium sheet resistance. For high-power devices where heavy-gauge wires were used, jet dispensing is applicable. For other application with regular wire diameters, direct write is used. The over-all tests demonstrated the feasibility of using dispensed materials to replace wire bonds, which brings better reliability for shock and vibration, as compared to traditional wire bonds. The reliability of this approach requires a set of optimally matched conductive and dielectric materials. Three conductive materials (A, B and C) and three dielectric materials (D, E and F) were evaluated in this study. Tested conductive epoxy A can be used for attachment of SMT components with non-tin terminals, short traces, and wire bonding replacement for 25-μm wires, but it is not ideal for fine lines(<65um). Tested conductive epoxy B can be used for fine traces (58μm), and wire bonding replacement for 25-μm wires. The resistance of that material is not ideal. Nano-silver paste can be used for long traces, heavy-gauge wire bonding replacement, pads/polygons, the sheet resistance is equivalent to 0.5Oz Cu. For dielectrics, epoxy C can be used for crossovers, dielectric layers, and components staking. Epoxy D can be used for die edge insulation, but it is not ideal. Epoxy E can be used for crossovers and components staking. Epoxy F can be used for encapsulation and components staking. The wire bonding replacement concept structure is established with the dielectric forming the insulation around die edge, then the conductive wires dispensed on top of it. Feasibility was confirmed, a proof-of-concept was built, and some level of thermal stress was tested on the samples. Particle size and viscosity are critical to achieve fine features for micro-dispensing conductors and dielectrics. Periodic evaluations must be conducted to follow up on industry's progress with materials.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000531-000535 ◽  
Author(s):  
Zhenzhen Shen ◽  
Aleksey Reiderman

Abstract In a harsh environment, wire-bonded interconnects are critical for overall reliability of microelectronic assemblies. Aluminum is the dominating metallization of the die wire bonding pads and aluminum wires are used to achieve monometallic bonding system on die side. On the substrate side, a monometallic connection is not readily available and typically involves expensive aluminum thin-film deposition or labor-intensive bonding tabs. Nickel-palladium-gold galvanic or electro-less plating stacks are also used to improve bondability and reliability of non-monometallic Al wire bonds on the substrate side. However, these plating stacks do not perform well after excursions above 330°C that are needed for the attachment of die and passives prior to wire bonding. At these temperatures, both palladium and nickel diffuse through the gold and form surface oxides that degrade wire bondability. In monometallic wire-bonding schemes, in addition to aluminum wires gold wires within same assembly are often also needed, for example, when some die is only available with gold-plated bond pads, or to connect substrates to gold-plated pins of hybrid housings. A universal substrate metallization, compatible with aluminum wire and gold wire, is therefore desirable. Thin-film substrates produced by sequential deposition and etching of gold metal, barrier metals, then aluminum metal is a good working solution, but it can be as much as ten times more expensive than other types of substrates. Printed thick-film metallization, a well-established technology, have been widely used for hybrid substrates. Silver-based thick films are inexpensive and capable of accepting aluminum and gold bonds. However, the silver-aluminum bonds are seldom used because of intermetallic formation and subsequent degradation triggered by multiple factors like temperature, humidity, and the presence of halogens. Pd and Pt are often added to the Ag thick films to decrease this effect, but potential usability and the reliability of these formulations in extreme temperature environments is not well researched. For this study, samples of Pt/Ag thick-film metallization were printed on Al2O3 substrates, and 25-um and 250-um aluminum wires and 50-um gold wires were wedge bonded in daisy chain to the substrate. The test vehicles were subjected to high-temperature testing at 260°C and 280°C. Thermal cycling tests from −20°C to 280°C were also performed. Mechanical and electrical characterizations of the wire bonds were conducted periodically. These tests included resistance and pull-strength measurements. Failure analysis of the bond joints was performed to understand the results of the tests. The 250-um Al wire and 25-um Al wire showed no significant changes until a critical time-at-temperature was reached. After reaching this temperature, the wire/substrate interface resistance rapidly increased to values as high as 40 Ohms for the 25-um Al wires. However, the pull strength remained within standard throughout the tests of up to 1200 hours. The relationship between time to failure and the temperature is presented in the paper. There was a four times life increase of bonds with every 20°C. With gold wires, no dramatic increase of bond resistance was observed, only a slight increase with time. The pull strength of Au wires remained stable throughout the time at high temperature. The tested Ag/Pt thick film metallization was found to be compatible with bonding of the gold wires and the aluminum wires for high-temperature applications up to an Arrhenius equivalent of 800 hours at 260°C. Additionally, Parylene HT coating was vapor-deposited on one set of 250-um Al wire-bonding samples. This set of samples demonstrated doubling of its useful life as compared to the uncoated samples.


2011 ◽  
Vol 2011 (1) ◽  
pp. 000589-000599
Author(s):  
Tu Anh Tran ◽  
Varughese Mathew ◽  
Harold Downey

New automotive requirements expect plastic packages to survive higher operating temperatures with extended thermal duration. Mission profiles for under-the-hood and transmission application historically specified minimal duration at maximum junction temperature, such as 50 total hours at 150C, while keeping most of the total operating duration at lower temperatures. Further module integration and more stringent environmental requirements push modules and thus plastic packages closer to the heat source. As such, new mission profiles include more than 3500 total hours at 150°C. To satisfy new automotive requirements, plastic packages must meet AEC Grade 0 or higher. One key limitation of the conventional plastic package is the use of gold bond wire on aluminum bond pad. Au-Al intermetallic degradation due to intermetallic transformation in high temperature storage condition remains the main reliability concern. More reliable intermetallic systems have been proposed that change the wire material and/or the bond pad metallization. An alternative wire material to gold, copper, has many benefits including low cost, high electrical and thermal conductivities and excellent reliability with aluminum pad metallization. Pad re-metallization using nickel/palladium, nickel/gold or nickel/palladium/gold over aluminum bond pad or copper bond pad offers a noble and reliable metal interconnect. This study focused on evaluating Au and Cu wire bonding on low-K-copper wafers having two types of bonding surfaces, the conventional aluminum pad and aluminum pad re-metallized with electroless nickel / electroless palladium / immersion gold. Ni thickness ranging from 1μm to 3μm was evaluated. Defects on as-plated Ni/Pd/Au bond pads such as color difference and surface roughness were determined to be due to nodule growth and plating non-uniformity. Wire bonded strip-level thermal aging was conducted to compare the high-temperature performance of the four interconnect types. Packages underwent extensive reliability stress conditions. Cross-sectioning through the ball bonds was also conducted to examine the welding region between the ball bond and bond pad. Defects in plating and wire bonding processes causing package reliability failures were identified. Recommendations for plating and wire bonding processes were derived to ensure high quality and reliable interconnect exceeding AEC grade 0 requirements.


Author(s):  
Huixian Wu ◽  
Arthur Chiang ◽  
David Le ◽  
Win Pratchayakun

Abstract With gold prices steadily going up in recent years, copper wire has gained popularity as a means to reduce cost of manufacturing microelectronic components. Performance tradeoff aside, there is an urgent need to thoroughly study the new technology to allay any fear of reliability compromise. Evaluation and optimization of copper wire bonding process is critical. In this paper, novel failure analysis and analytical techniques are applied to the evaluation of copper wire bonding process. Several FA/analytical techniques and FA procedures will be discussed in detail, including novel laser/chemical/plasma decapsulation, FIB, wet chemical etching, reactive ion etching (RIE), cross-section, CSAM, SEM, EDS, and a combination of these techniques. Two case studies will be given to demonstrate the use of these techniques in copper wire bonded devices.


2020 ◽  
Vol 12 ◽  
Author(s):  
Fang Wang ◽  
Jingkai Wei ◽  
Caixia Guo ◽  
Tao Ma ◽  
Linqing Zhang ◽  
...  

Background: At present, the main problems of Micro-Electro-Mechanical Systems (MEMS) temperature detector focus on the narrow range of temperature detection, difficulty of the high temperature measurement. Besides, MEMS devices have different response characteristics for various surrounding temperature in the petrochemical and metallurgy application fields with high-temperature and harsh conditions. To evaluate the performance stability of the hightemperature MEMS devices, the real-time temperature measurement is necessary. Objective: A schottky temperature detector based on the metal/n-ZnO/n-Si structures is designed to measure high temperature (523~873K) for the high-temperature MEMS devices with large temperature range. Method: By using the finite element method (FEM), three different work function metals (Cu, Ni and Pt) contact with the n-ZnO are investigated to realize Schottky. At room temperature (298K) and high temperature (523~873K), the current densities with various bias voltages (J-V) are studied. Results: The simulation results show that the high temperature response power consumption of three schottky detectors of Cu, Ni and Pt decreases successively, which are 1.16 mW, 63.63 μW and 0.14 μW. The response temperature sensitivities of 6.35 μA/K, 0.78 μA/K, and 2.29 nA/K are achieved. Conclusion: The Cu/n-ZnO/n-Si schottky structure could be used as a high temperature detector (523~873K) for the hightemperature MEMS devices. It has a large temperature range (350K) and a high response sensitivity is 6.35 μA/K. Compared with traditional devices, the Cu/n-ZnO/n-Si Schottky structure based temperature detector has a low energy consumption of 1.16 mW, which has potential applications in the high-temperature measurement of the MEMS devices.


Sign in / Sign up

Export Citation Format

Share Document