High Temperature (230 °C) Isolated Power Supply

2010 ◽  
Vol 2010 (HITEC) ◽  
pp. 000283-000288 ◽  
Author(s):  
B. Reese ◽  
R. Shaw ◽  
J. Hornberger ◽  
R. Schupbach ◽  
A. Lostetter

This paper discusses the development of a high temperature (i.e., 230 °C ambient) 100V–300V/15V 20W isolated power supply. The power supply is implemented using Silicon-Carbide (SiC) power switches, high-temperature silicon on insulator (HTSOI) control circuitry, as well as custom high temperature magnetics and packaging technology. The heart of this power supply is a custom-built PWM controller. The controller was built utilizing HTSOI component, which operate at temperatures as high as 300 °C. The developed power supply targets high ambient temperature environment applications and includes features such as housekeeping power supply, soft-start and under-voltage lockout. The power supply is packaged using a multi-chip module (MCM) packaging approach. A single layer power substrate and a multiple layer control substrate are used. Bare die devices are utilized to save space, reduce parasitic impedances, and increase temperature of operation and reliability. This paper provides details on the electrical and thermal design as well as fabrication and characterization of the power supply. Additionally, results of the full characterization of this power supply are provided; this includes temperature testing up to 230 °C, efficiency results, load transition behavior, output ripple, etc.

2011 ◽  
Vol 20 (03) ◽  
pp. 471-484 ◽  
Author(s):  
LIANG ZUO ◽  
ROBERT GREENWELL ◽  
SYED K. ISLAM ◽  
M. A. HUQUE ◽  
BENJAMIN J. BLALOCK ◽  
...  

In recent years, increasing demand for hybrid electric vehicles (HEVs) has generated the need for reliable and low-cost high-temperature electronics which can operate at the high temperatures under the hood of these vehicles. A high-voltage and high temperature gate-driver integrated circuit for SiC FET switches with short circuit protection has been designed and implemented in a 0.8-micron silicon-on-insulator (SOI) high-voltage process. The prototype chip has been successfully tested up to 200°C ambient temperature without any heat sink or cooling mechanism. This gate-driver chip can drive SiC power FETs of the DC-DC converters in a HEV, and future chip modifications will allow it to drive the SiC power FETs of the traction drive inverter. The converter modules along with the gate-driver chip will be placed very close to the engine where the temperature can reach up to 175ΰC. Successful operation of the chip at this temperature with or without minimal heat sink and without liquid cooling will help achieve greater power-to-volume as well as power-to-weight ratios for the power electronics module.


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000096-000103
Author(s):  
Yoann Dusé ◽  
Fabien Laplace ◽  
Nicolas Joubert ◽  
Xavier Montmayeur ◽  
Noureddine Zitouni ◽  
...  

We present in this paper two new products for high-temperature, low-voltage (2.8V to 5.5V) power management applications. The first product is an original implementation of a monolithic low dropout regulator (XTR70010), able to deliver up to 1A at 230°C with less than 1V of dropout. This new voltage regulator can source an output current level up to 1.5A. The regulated output voltage can be selected among 32 preset values from 0.5V to 3.6V in steps of 100mV, or it can be obtained with a pair of external resistors. The circuit integrates complex analog and digital control blocks providing state of the art features such as UVLO protection, chip enable control, soft start-up and soft shut-down, hiccup short-circuit protection, customer selectable thermal shut-down, input power supply protection, output overshoot remover and stability over an extremely wide range of load capacitances. The circuit offers a fair ±2% absolute accuracy and is guaranteed latch-up free. The second product is an advanced high-temperature, low-power, digitally trimmable voltage reference (XTR75020). Thanks to a custom, 1-wire serial interface, the absolute precision and the temperature coefficient can be adjusted in order to obtain an accuracy better than 0.5% with a temperature coefficient bellow ±20ppm/°C. On-chip OTP memory for trimming of absolute value and temperature coefficient makes the circuit extremely accurate and almost insensitive to drifts over time and temperature. The circuit features a class AB output buffer able to source or sink up to 5mA and remains stable with any load capacitance up to 50μF. The XTR75020 has nine preset possible output voltages. The source and sink short circuit current always remains bellow 25mA. The quiescent current consumption is 300μA typical at 230°C while the standby current is, in all cases, under 20μA. Both devices are designed on a latch-up free silicon-on-insulator process.


1988 ◽  
Vol 123 ◽  
Author(s):  
C.P. Swann ◽  
S.J. Fleming

The process of translating copper ore into a finished bronze involved a series of discrete steps (Fig. 1), the products and by-products of which comprise a diversity of materials. The full characterization of these materials, and thereby the reconstruction of how the metalworking artisans of a particular culture went about their craft, requires a variety of analytical tools, each applied with specific interpretive goals in mind. For example, the use of high power optical microscopy (with magnifications ranging 10x to 400x) allows a qualitative description of ore and slag petrography [1], and the definition of individual phases in metal microstructure (see, for example, refs. [2,3]); the use of high temperature cell (HTC) microscopy, offers a novel means of studying a slag's thermodynamic properties [4]; and so on.


2016 ◽  
Vol 2016 (HiTEC) ◽  
pp. 000180-000183
Author(s):  
Rito Mijarez ◽  
Angel Gomez ◽  
David Pascacio ◽  
Ivan Martinez ◽  
Ricardo Guevara

Abstract The hydrocarbon industry leans heavily upon advanced technologies to extract oil and gas from greater depths and in harsher environments. The challenge to electronics manufacturers and designers is to make complex electronics work at the high temperatures, vibration, and extreme pressures encountered in these locations. Among the more critical electronic systems required for high temperature down-hole operations is high efficiency switching mode power supplies (SMPS). The use of high frequency switching permits not only decreasing the size of inductors and capacitors in the circuit design, but also obtaining typical power efficiencies up to 90%. Generally a SMPS is composed of a controller, a converter and silicon carbide (SiC) power switches. High temperature down-hole gauges operate with low voltages either 3.3V or 5.0V; however, wire-line surface power equipment utilizes higher voltages above 250 V CD. Hence, SMPS requires efficient power dissipation circuits to reduce the DC input voltage. This work describes a high temperature SMPS that has a DC input range from 150 V CD to 300 V CD, ± 6 V CD output voltages and 12 W total power. The SMPS design uses a CA start up pulse provided by a programmable surface power supply via a mono-conductor wire-line cable; subsequently, the SMPS sustains its operation by powering itself using one of the voltage outputs. The obtained laboratory tests results of the down-hole SMPS, using changes in temperature from 25 °C – 200 °C, provide a firm basis for testing and evaluating the DC-CD power supply in high temperature gauges in the field.


Author(s):  
X. Lin ◽  
X. K. Wang ◽  
V. P. Dravid ◽  
J. B. Ketterson ◽  
R. P. H. Chang

For small curvatures of a graphitic sheet, carbon atoms can maintain their preferred sp2 bonding while allowing the sheet to have various three-dimensional geometries, which may have exotic structural and electronic properties. In addition the fivefold rings will lead to a positive Gaussian curvature in the hexagonal network, and the sevenfold rings cause a negative one. By combining these sevenfold and fivefold rings with sixfold rings, it is possible to construct complicated carbon sp2 networks. Because it is much easier to introduce pentagons and heptagons into the single-layer hexagonal network than into the multilayer network, the complicated morphologies would be more common in the single-layer graphite structures. In this contribution, we report the observation and characterization of a new material of monolayer graphitic structure by electron diffraction, HREM, EELS.The synthesis process used in this study is reported early. We utilized a composite anode of graphite and copper for arc evaporation in helium.


Author(s):  
P. Roitman ◽  
B. Cordts ◽  
S. Visitserngtrakul ◽  
S.J. Krause

Synthesis of a thin, buried dielectric layer to form a silicon-on-insulator (SOI) material by high dose oxygen implantation (SIMOX – Separation by IMplanted Oxygen) is becoming an important technology due to the advent of high current (200 mA) oxygen implanters. Recently, reductions in defect densities from 109 cm−2 down to 107 cm−2 or less have been reported. They were achieved with a final high temperature annealing step (1300°C – 1400°C) in conjunction with: a) high temperature implantation or; b) channeling implantation or; c) multiple cycle implantation. However, the processes and conditions for reduction and elimination of precipitates and defects during high temperature annealing are not well understood. In this work we have studied the effect of annealing temperature on defect and precipitate reduction for SIMOX samples which were processed first with high temperature, high current implantation followed by high temperature annealing.


Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


Author(s):  
Tian Lu ◽  
Qinxue Chen ◽  
Zeyu Liu

Although cyclo[18]carbon has been theoretically and experimentally investigated since long time ago, only very recently it was prepared and directly observed by means of STM/AFM in condensed phase (Kaiser et al., <i>Science</i>, <b>365</b>, 1299 (2019)). The unique ring structure and dual 18-center π delocalization feature bring a variety of unusual characteristics and properties to the cyclo[18]carbon, which are quite worth to be explored. In this work, we present an extremely comprehensive and detailed investigation on almost all aspects of the cyclo[18]carbon, including (1) Geometric characteristics (2) Bonding nature (3) Electron delocalization and aromaticity (4) Intermolecular interaction (5) Reactivity (6) Electronic excitation and UV/Vis spectrum (7) Molecular vibration and IR/Raman spectrum (8) Molecular dynamics (9) Response to external field (10) Electron ionization, affinity and accompanied process (11) Various molecular properties. We believe that our full characterization of the cyclo[18]carbon will greatly deepen researchers' understanding of this system, and thereby help them to utilize it in practice and design its various valuable derivatives.


Sign in / Sign up

Export Citation Format

Share Document