scholarly journals New bitongling (NBTL) ameliorates rheumatoid arthritis in rats through inhibiting JAK2/STAT3 signaling pathway

2021 ◽  
Vol 65 (1) ◽  
Author(s):  
Xiang Li ◽  
Yu Xie ◽  
An Kang ◽  
Yue Wang

Rheumatoid arthritis (RA) is featured by a variety of physical symptoms and fibroblast-like synoviocytes (FLSs) abnormal proliferation. Increasing evidence has demonstrated that traditional Chinese medicine exerts an important role in RA treatment. New bitongling (NBTL) as one of the traditional Chinese medicine has been reported to be involved in the progression of RA, but the exact mechanism is unclear. In our study, we intended to investigate the effect of NBTL on RA to identify the mechanisms related to JAK2/STAT3 signaling pathway. Extracts of Tripterygium wilfordii (TW), a traditional Chinese herbal medicine, have been widely used for treating RA in China for several decades, so, TW was used as a positive control drug for TBNL. RA rats were constructed by immunization with collagen type II to evaluate the action of NBTL in vivo. Body weight and arthritic index were evaluated. Hematoxylin and Eosin staining was performed to analysis the morphological changes of ankle joints tissue. TUNEL and flow cytometry were performed to examine cell apoptosis, while CCK8 and Ethynyl-2′-deoxyuridine (EdU) were performed to examine cell proliferation. In addition, the markers of inflammation were detected by Western blot, ELISA, and RT-qPCR. Firstly, we find that rats treated with NBTL or TW not only reduced swelling degree and bone destruction, but also repressed IL-1 β and IL-6 levels. In addition, NBTL and TW could increase the weight of rats, and promote the level of IL-10 and IL-4 in vivo. Furthermore, NBTL inhibited inflammation of FLS, induced cell apoptosis and hindered cell proliferation, which was reversed by dipeptidyl peptidase (DPP), a JAK2/STAT3 pathway activator. Taken together, NBTL potentially retarded RA via JAK2/STAT3 pathway, highlighting novel mechanisms associated with RA.

2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Binlong Zhong ◽  
Deyao Shi ◽  
Fashuai Wu ◽  
Shangyu Wang ◽  
Hongzhi Hu ◽  
...  

Abstract Osteosarcoma (OS) is the most common malignant bone tumor. The prognosis of metastatic and recurrent OS patients still remains unsatisfactory. Cisplatin reveals undeniable anti-tumor effect while induces severe side effects that threatening patients’ health. Dynasore, a cell-permeable small molecule that inhibits dynamin activity, has been widely studied in endocytosis and phagocytosis. However, the anti-tumor effect of dynasore on OS has not yet been ascertained. In the present study, we suggested that dynasore inhibited cell proliferation, migration, invasion, and induced G0/G1 arrest of OS cells. Besides, dynasore repressed tumorigenesis of OS in xenograft mouse model. In addition, we demonstrated that dynasore improved the anti-tumor effect of cisplatin in vitro and in vivo without inducing nephrotoxicity and hepatotoxicity. Mechanistically, dynasore repressed the expression of CCND1, CDK4, p-Rb, and MMP-2. Furthermore, we found that dynasore exerts anti-tumor effects in OS partially via inhibiting STAT3 signaling pathway but not ERK-MAPK, PI3K-Akt or SAPK/JNK pathways. P38 MAPK pathway served as a negative regulatory mechanism in dynasore induced anti-OS effects. Taken together, our study indicated that dynasore does suppress cell proliferation, migration, and invasion via STAT3 signaling pathway, and enhances the antitumor capacity of cisplatin in OS. Our results suggest that dynasore is a novel candidate drug to inhibit the tumor growth of OS and enhance the anti-tumor effects of cisplatin.


2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Qian Zhang ◽  
Chen Zhao ◽  
Lei Zhang ◽  
Kai Sun ◽  
Linlin Yu ◽  
...  

Acute pancreatitis (AP), an inflammatory disorder of the pancreas, can cause systemic inflammatory responses. Escin Sodium (ES), a natural mixture of triterpene saponins extracted from the dry ripe fruit of Fructus Aesculi or horse chestnut crude, has been demonstrated to have antiedematous, anti-inflammatory, and antiexudative effects. We here aim to investigate the effects of ES pretreatment on AP in vivo and in vitro and explore its potential molecular mechanism. In the present study, we demonstrated that ES pretreatment could apparently decrease amylase and lipase, downregulate inflammatory cytokines, and attenuate pancreatic damage. Additionally, the increased expression of apoptotic-related proteins and the results of flow cytometry demonstrated the effects of ES on promoting apoptosis in acinar cells. Moreover, ES could enhance mitochondrial membrane potential (MMP, ΔΨm) and reactive oxygen species (ROS) level and reduce intracellular calcium concentration, which are closely related to mitochondrial-mediated death. The effect of ES pretreatment on acinar cell apoptosis was furtherly confirmed by the regulatory pathway of the ERK/STAT3 axis. These results suggest that ES attenuates the severity of AP by enhancing cell apoptosis via suppressing the ERK/STAT3 signaling pathway. These findings provide evidence for ES which is treated as a novel and potent therapeutic for the treatment of AP.


2020 ◽  
Vol 10 (1) ◽  
pp. 105-109
Author(s):  
Chunling Peng ◽  
Chunqian Feng ◽  
Sha Feng ◽  
Daiqiang Li

Tumor microenvironment can lead to chemotherapy resistance in lung cancer. PD-1 and PD-L1 are core regulatory molecules of immune checkpoint. Our study intends to assess IFN-γ combined with Pembrolizumab’s effect on chemoresistance of lung adenocarcinoma. Human A549/DDP lung adenocarcinoma resistant strains were cultured in vitro and randomly divided into control group, IFN-γ group and Pembrolizumab+IFN-γ group followed by analysis of cell proliferation by MTT assay, cell apoptosis by flow cytometry, the levels of PD-L1 and Bcl-2 by Western Blot, the level of interleukin-10 (IL-10) and IL-17 by ELISA, as well as the expression of JAK/STAT3 signaling pathway by Western Blot. IFN-γ-treated A549/DDP cells showed significantly inhibited cell apoptosis, promoted cell proliferation, increased level of IL-10, IL-17, and elevated expression of PD-L1 and Bcl-2, as well as increased phosphorylation of JAK and STAT3 (P < 0.05). However, Pembrolizumab combined with IFN-γ treatment significantly inhibited cell proliferation, increased cell apoptosis, decreased IL-10 and IL-17 level, PD-L1 and Bcl-2 expression as well as JAK and STAT3 phosphorylation with significant difference compared to IFN-γ treatment alone (P < 0.05). IFN-γ up-regulates PD-L1 expression by up-regulating the JAK/STAT3 pathway, inhibits the apoptosis of drug-resistant cells in lung adenocarcinoma, and promotes cell proliferation. Pembrolizumab can reverse IFN-γ’s effect on drug-resistant cells of lung adenocarcinoma, down-regulate JAK/STAT3 signaling pathway and, promote the apoptosis of drug-resistant lung cancer cells, and inhibit cell proliferation.


2021 ◽  
Vol 2021 ◽  
pp. 1-13 ◽  
Author(s):  
Shouqian Dai ◽  
Ting Liang ◽  
Xiu Shi ◽  
Zongping Luo ◽  
Huilin Yang

Objective. To evaluate the influence of salvianolic acid B (SAB), an antioxidant derived from Danshen, on intervertebral disc degeneration (IDD) and its possible molecular mechanisms. Methods. Sixty adult rats were randomly grouped (control, IDD, and SAB IDD groups). IDD was induced using needle puncture. The rats received daily administration of SAB (20 mg/kg) in the SAB IDD group while the other two groups received only distilled water. The extent of IDD was evaluated using MRI after 3 and 6 weeks and histology after 6 weeks. Oxidative stress was assessed using the ELISA method. In in vitro experiments, nucleus pulposus cells (NPCs) were treated with H2O2 (100 μM) or SAB+H2O2, and levels of oxidative stress were measured. Cell apoptosis was assessed by flow cytometry, expression levels of Bcl-2, Bax, and cleaved caspase-3 proteins. Cell proliferation rate was assessed by EdU analysis. Pathway involvement was determined by Western blotting while the influence of the pathway on NPCs was explored using the pathway inhibitor AG490. Results. The data demonstrate that SAB attenuated injury-induced IDD and oxidative stress, caused by activation of the JAK2/STAT3 signaling pathway in vivo. Oxidative stress induced by H2O2 was reversed by SAB in vitro. SAB reduced the increased cell apoptosis, cleaved caspase-3 expression, and caspase-3 activity induced by H2O2. Reduced cell proliferation and decreased Bcl-2/Bax ratio induced by H2O2 were rescued by SAB. Additionally, the JAK2/STAT3 pathway was activated by SAB, while AG490 counteracted this effect. Conclusion. The results suggest that SAB protects intervertebral discs from oxidative stress-induced degeneration by enhancing proliferation and attenuating apoptosis via activation of the JAK2/STAT3 signaling pathway.


2021 ◽  
Author(s):  
Dan Zu ◽  
Qi Dong ◽  
Sunfang Chen ◽  
Yongde Chen ◽  
Jun Yao ◽  
...  

Abstract Background: MicroRNAs (miRNA) are regulatory small noncoding RNAs, which play a key role in many cancers. It has been found that miR-331-3p is involved in the development and progression of various cancers, but there are few reports in osteosarcoma. Methods: The public GEO database was used to analyze the survival difference of miR-331-3p in OS organizations. The level of cell proliferation assay was assessed by CCK-8 and colony formation. Tanswell and Wound-healing detect the transfer and invasion ability of miR-331-3p in OS. TargetScan, miRDBmiR, TarBase, and dual luciferase reporter gene assays were used to determine SOCS1 as a targeted regulator. Western blot and immunohistochemistry were used to detect the expression of protein levels. A mouse model of subcutaneously transplantable tumors is used to evaluate the proliferation of OS in vivo.Results: The low expression of miR-331-3p is negatively correlated with the overall survival of OS patients. Overexpression of miR-331-3p significantly inhibited cell proliferation, metastasis and invasion. miR-331-3p affects the occurrence and development of osteosarcoma by targeting the SOCS1/JAK2/STAT3 signaling pathway.Conclusion: miR-331-3p reduces the expression of SOCS1 by combining with its 3'UTR, thereby activating the JAK2/STAT3 signaling pathway to regulate the progression of OS.


2021 ◽  
pp. jim-2020-001437
Author(s):  
Ming Chen ◽  
Minghui Li ◽  
Na Zhang ◽  
Wenwen Sun ◽  
Hui Wang ◽  
...  

This study was aimed to investigate the effects of miR-218-5p on the proliferation, apoptosis, autophagy, and oxidative stress of rheumatoid arthritis synovial fibroblasts (RASFs), and the related mechanisms. Quantitative reverse transcription–PCR showed that the expression of miR-218-5p in rheumatoid arthritis synovial tissue was significantly higher than that in healthy synovial tissue. Compared with healthy synovial fibroblasts, miR-218-5p expression was obviously upregulated in RASFs, while KLF9 protein expression was markedly downregulated. Mechanistically, miR-218-5p could directly bind to the 3′ untranslated region of KLF9 to inhibit the expression of KLF9. Additionally, transfection of miR-218-5p small interfering RNA (siRNA) inhibited the proliferation but promoted apoptosis and autophagy of RASFs. Simultaneously, miR-218-5p silencing reduced reactive oxygen species and malondialdehyde levels and increased superoxide dismutase and glutathione peroxidase activity to improve oxidative stress in RASFs. More importantly, the introduction of KLF9 siRNA reversed the effects of miR-218-5p siRNA transfection on RASF proliferation, apoptosis, autophagy, and oxidative stress. What is more, silencing miR-218-5p inhibited the activation of JAK2/STAT3 signaling pathway by targeting KLF9. Collectively, knockdown of miR-218-5p could regulate the proliferation, apoptosis, autophagy and oxidative stress of RASFs by increasing the expression of KLF9 and inhibiting the activation of the JAK2/STAT3 signaling pathway, which may provide a potential target for the mechanism research of RA.


Author(s):  
Zhongwei Zhao ◽  
Jingjing Song ◽  
Bufu Tang ◽  
Shiji Fang ◽  
Dengke Zhang ◽  
...  

Abstract Background Emerging evidence suggests that circular RNAs play critical roles in disease development especially in cancers. Previous genome-wide RNA-seq studies found that a circular RNA derived from SOD2 gene was highly upregulated in hepatocellular carcinoma (HCC), however, the role of circSOD2 in HCC remains largely unknown. Methods The expression profiling of circSOD2 and microRNA in HCC patients were assessed by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). SiRNA or CRISPR-CAS9 were used to silence gene expression. The biological function of circSOD2 in HCC was investigated using in vitro and in vivo studies including, trans-well cell migration, cell apoptosis, cell cycle, CCK8, siRNA interference, western blots, and xenograft mouse model. The underlying molecular mechanism was determined by Chromatin Immunoprecipitation quantitative real time PCR (ChIP-qPCR), bioinformatic analysis, biotin-pull down, RNA immunoprecipitation, 5-mc DNA pulldown and luciferase assays. Results In accordance with previous sequencing results, here, we demonstrated that circSOD2 was highly expressed in HCC tumor tissues compared with normal liver tissues. Mechanically, we showed that histone writer EP300 and WDR5 bind to circSOD2 promoter and trigger its promoter H3K27ac and H3K4me3 modification, respectively, which further activates circSOD2 expression. SiRNA mediated circSOD2 suppression impaired liver cancer cell growth, cell migration, prohibited cell cycle progression and in vivo tumor growth. By acting as a sponge, circSOD2 inhibits miR-502-5p expression and rescues miR-502-5p target gene DNMT3a expression. As a DNA methyltransferase, upregulated DNMA3a suppresses SOCS3 expression by increasing SOCS3 promoter DNA methylation. This event further accelerates SOCS3 downstream JAK2/STAT3 signaling pathway activation. In addition, we also found that activated STAT3 regulates circSOD2 expression in a feedback way. Conclusion The novel signaling axis circSOD2/miR-502-5p/DNMT3a/JAK2/STAT3/circSOD2 provides a better understanding of HCC tumorigenesis. The molecular mechanism underlying this signaling axis offers new prevention and treatment of HCC.


2021 ◽  
Vol 17 (73) ◽  
pp. 45
Author(s):  
Juandong Wang ◽  
Ai Li ◽  
Li Zhang ◽  
VishnuPriya Veeraraghavan ◽  
SurapaneniKrishna Mohan

Sign in / Sign up

Export Citation Format

Share Document